header advert
Results 1 - 10 of 10
Results per page:
Bone & Joint Research
Vol. 11, Issue 8 | Pages 518 - 527
17 Aug 2022
Hu W Lin J Wei J Yang Y Fu K Zhu T Zhu H Zheng X

Aims

To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope.

Methods

Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims

This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients.

Methods

A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 259 - 273
6 Apr 2023
Lu R Wang Y Qu Y Wang S Peng C You H Zhu W Chen A

Aims

Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism.

Methods

In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 370 - 379
30 Jun 2021
Binder H Hoffman L Zak L Tiefenboeck T Aldrian S Albrecht C

Aims. The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT). Methods. A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m. 2. (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types. Results. The mean defect size of the tibiofemoral joint compartment was 4.28 cm. 2. (SD 1.70). In total, 11 patients (12.6%) underwent transplantation with Chondro-Gide (matrix-associated autologous chondrocyte implantation (MACI)), 40 patients (46.0%) with Hyalograft C (HYAFF), 21 patients (24.1%) with Cartilage Regeneration System (CaReS), and 15 patients (17.2%) with NOVOCART 3D. The mean IKDC Subjective Knee Form score improved from 35.71 (SD 6.44) preoperatively to 75.26 (SD 18.36) after 24 months postoperatively in the Hyalograft group, from 35.94 (SD 10.29) to 71.57 (SD 16.31) in the Chondro-Gide (MACI) group, from 37.06 (SD 5.42) to 71.49 (SD 6.76) in the NOVOCART 3D group, and from 45.05 (SD 15.83) to 70.33 (SD 19.65) in the CaReS group. Similar improvements were observed in the VAS and Brittberg scores. Conclusion. Two years postoperatively, there were no significant differences in terms of outcomes. Our data demonstrated that MACT, regardless of the implants used, resulted in good clinical improvement two years after transplantation for localized tibiofemoral defects. Cite this article: Bone Joint Res 2021;10(7):370–379


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims

The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model.

Methods

A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims

Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model.

Methods

Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 440 - 446
1 Jul 2018
Woods AK Broomfield J Monk P Vollrath F Glyn-Jones S

Objectives. The aim of this study was to investigate the structural integrity of torn and non-torn human acetabular labral tissue. Methods. A total of 47 human labral specimens were obtained from a biobank. These included 22 torn specimens and 25 control specimens from patients undergoing total hip arthroplasty with macroscopically normal labra. The specimens underwent dynamic shear analysis using a rheometer to measure storage modulus, as an indicator of structural integrity. Results. There was a significant difference in the storage modulus between torn (mean modulus = 2144.08 Pa) and non-torn (3178.1 Pa) labra (p = 0.0001). Conclusion. The acetabular labrum of young patients with a tear has significantly reduced structural integrity compared with a non-torn labrum in older patients with end-stage osteoarthritis. This study contributes to the understanding of the biomechanics of labral tears, and the observation of reduced structural integrity in torn labra may explain why some repairs fail. Our data demonstrate that labral tears probably have a relatively narrow phenotype, presenting a basis for further investigations that will provide quantifiable data to support their classification and a means to develop a standardized surgical technique for their repair. This study also demonstrates the value of novel biomechanical testing methods in investigating pathological tissues of orthopaedic interest. Cite this article: A. K. Woods, J. Broomfield, P. Monk, F. Vollrath, S. Glyn-Jones. Dynamic shear analysis: a novel method to determine mechanical integrity of normal and torn human acetabular labra: Implications for prediction of outcome of repair. Bone Joint Res 2018;7:440–446. DOI: 10.1302/2046-3758.77.BJR-2017-0282.R2


Bone & Joint Research
Vol. 8, Issue 1 | Pages 11 - 18
1 Jan 2019
McLean M McCall K Smith IDM Blyth M Kitson SM Crowe LAN Leach WJ Rooney BP Spencer SJ Mullen M Campton JL McInnes IB Akbar M Millar NL

Objectives

Tranexamic acid (TXA) is an anti-fibrinolytic medication commonly used to reduce perioperative bleeding. Increasingly, topical administration as an intra-articular injection or perioperative wash is being administered during surgery. Adult soft tissues have a poor regenerative capacity and therefore damage to these tissues can be harmful to the patient. This study investigated the effects of TXA on human periarticular tissues and primary cell cultures using clinically relevant concentrations.

Methods

Tendon, synovium, and cartilage obtained from routine orthopaedic surgeries were used for ex vivo and in vitro studies using various concentrations of TXA. The in vitro effect of TXA on primary cultured tenocytes, fibroblast-like synoviocytes, and chondrocytes was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assays, fluorescent microscopy, and multi-protein apoptotic arrays for cell death.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 205 - 212
1 Mar 2018
Lin Y Hall AC Simpson AHRW

Objectives

The purpose of this study was to create a novel ex vivo organ culture model for evaluating the effects of static and dynamic load on cartilage.

Methods

The metatarsophalangeal joints of 12 fresh cadaveric bovine feet were skinned and dissected aseptically, and cultured for up to four weeks. Dynamic movement was applied using a custom-made machine on six joints, with the others cultured under static conditions. Chondrocyte viability and matrix glycosaminoglycan (GAG) content were evaluated by the cell viability probes, 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI), and dimethylmethylene blue (DMMB) assay, respectively.