Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads. Results. Experimental pull-out strengths were excellently correlated to the µFE pull-out stiffness of the ROI (R. 2. > 0.87) and FV (R. 2. > 0.84) models. No significant difference due to screw design was observed. Cement augmentation increased pull-out stiffness by up to 94% and 48% for L and R screws, respectively, but only increased bending stiffness by up to 6.9% and 1.5%, respectively. Cementing involving only one screw tip resulted in lower stiffness increases in all tested screw designs and loading cases. The stiffening effect of cement augmentation on pull-out and bending stiffness was strongly and negatively correlated to local bone density around the screw (correlation coefficient (R) = -0.95). Conclusion. This combined experimental, µCT and µFE study showed that regional analyses may be sufficient to predict fixation strength in pull-out and that full analyses could show that cement augmentation around pedicle screws increased fixation stiffness in both pull-out and bending, especially for low-density bone. Cite this article: Bone Joint Res 2021;10(12):797–806


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 217 - 223
1 Feb 2013
Hwang CJ Lee JH Baek H Chang B Lee C

We evaluated the efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E-BMP-2) in a mini-pig model of spinal anterior interbody fusion. A total of 14 male mini-pigs underwent three-level anterior lumbar interbody fusion using polyether etherketone (PEEK) cages containing porous hydroxyapatite (HA). Four groups of cages were prepared: 1) control (n = 10 segments); 2) 50 μg E-BMP-2 (n = 9); 3) 200 μg E-BMP-2 (n = 10); and 4) 800 μg E-BMP-2 (n = 9). At eight weeks after surgery the mini-pigs were killed and the specimens were evaluated by gross inspection and manual palpation, radiological evaluation including plain radiographs and micro-CT scans, and histological analysis. Rates of fusion within PEEK cages and overall union rates were calculated, and bone formation outside vertebrae was evaluated. One animal died post-operatively and was excluded, and one section was lost and also excluded, leaving 38 sites for assessment. This rate of fusion within cages was 30.0% (three of ten) in the control group, 44.4% (four of nine) in the 50 μg E-BMP-2 group, 60.0% (six of ten) in the 200 μg E-BMP-2 group, and 77.8% (seven of nine) in the 800 μg E-BMP-2 group. Fusion rate was significantly increased by the addition of E-BMP-2 and with increasing E-BMP-2 dose (p = 0.046). In a mini-pig spinal anterior interbody fusion model using porous HA as a carrier, the implantation of E-BMP-2-loaded PEEK cages improved the fusion rate compared with PEEK cages alone, an effect that was significantly increased with increasing E-BMP-2 dosage. Cite this article: Bone Joint J 2013;95-B:217–23