Aims. To achieve expert clinical consensus in the delivery of hydrodilatation for the treatment of primary frozen shoulder to inform clinical practice and the design of an intervention for evaluation. Methods. We conducted a two-stage, electronic questionnaire-based, modified Delphi survey of shoulder experts in the UK NHS. Round one required positive, negative, or neutral ratings about hydrodilatation. In round two, each participant was reminded of their round one responses and the modal (or ‘group’) response from all participants. This allowed participants to modify their responses in round two. We proposed respectively mandating or encouraging elements of hydrodilatation with 100% and 90% positive consensus, and respectively disallowing or discouraging with 90% and 80% negative consensus. Other elements would be optional. Results. Between 4 August 2020 and 4 August 2021, shoulder experts from 47 hospitals in the UK completed the study. There were 106 participants (consultant upper limb orthopaedic surgeons, n = 50; consultant radiologists, n = 52; consultant physiotherapist, n = 1; extended scope physiotherapists, n = 3) who completed round one, of whom 97 (92%) completed round two. No elements of hydrodilatation were “mandated” (100% positive rating). Elements that were “encouraged” (≥ 80% positive rating) were the use of image guidance, local anaesthetic, normal saline, and steroids to deliver the injection. Injecting according to patient tolerance, physiotherapy, and home exercises were also “encouraged”. No elements were “discouraged” (≥ 80% negative rating) although using
Aims
Patients and Methods
To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs.