The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
There is great variability in acetabular component
orientation following hip replacement. The aims of this study were
to compare the component orientation at impaction with the orientation
measured on post-operative radiographs and identify factors that
influence the difference between the two. A total of 67 hip replacements
(52 total hip replacements and 15 hip resurfacings) were prospectively
studied. Intra-operatively, the orientation of the acetabular component
after impaction relative to the operating table was measured using
a validated stereo-photogrammetry protocol. Post-operatively, the
radiographic orientation was measured; the mean inclination/anteversion
was 43° ( This study demonstrated that in order to achieve a specific radiographic
orientation target, surgeons should implant the acetabular component
5° less inclined and 8° more anteverted than their target. Great
variability (2 Cite this article:
We assessed the orientation of the acetabular
component in 1070 primary total hip arthroplasties with hard-on-soft, small
diameter bearings, aiming to determine the size and site of the
target zone that optimises outcome. Outcome measures included complications,
dislocations, revisions and ΔOHS (the difference between the Oxford
Hip Scores pre-operatively and five years post-operatively). A wide
scatter of orientation was observed (2 This study demonstrated that with traditional technology surgeons
can only reliably achieve a target zone of ±15°. As the optimal
zone to diminish the risk of dislocation is also ±15°, surgeons
should be able to achieve this. This is the first study to demonstrate
that optimal orientation of the acetabular component improves the
functional outcome. However, the target zone is small (± 5°) and
cannot, with current technology, be consistently achieved. Cite this article:
It has recently been reported that the transverse
acetabular ligament (TAL) is helpful in determining the position
of the acetabular component in total hip replacement (THR). In this
study we used a computer-assisted navigation system to determine
whether the TAL is useful as a landmark in THR. The study was carried
out in 121 consecutive patients undergoing primary THR (134 hips),
including 67 dysplastic hips (50%). There were 26 men (29 hips)
and 95 women (105 hips) with a mean age of 60.2 years (17 to 82)
at the time of operation. After identification of the TAL, its anteversion
was measured intra-operatively by aligning the inferomedial rim
of the trial acetabular component with the TAL using computer-assisted
navigation. The TAL was identified in 112 hips (83.6%). Intra-observer reproducibility
in the measurement of anteversion of the TAL was high, but inter-observer
reproducibility was moderate. Each surgeon was able to align the trial component according
to the target value of the angle of anteversion of the TAL, but
it was clear that methods may differ among surgeons. Of the measurements
of the angle of anteversion of the TAL, 5.4% (6 of 112 hips) were
outliers from the safe zone. In summary, we found that the TAL is useful as a landmark when
implanting the acetabular component within the safe zone in almost
all hips, and to prevent it being implanted in retroversion in all
hips, including dysplastic hips. However, as anteversion of the
TAL may be excessive in a few hips, it is advisable to pay attention
to individual variations, particularly in those with severe posterior
pelvic tilt. Cite this article:
Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the
Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies. Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.Aims
Methods
Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).Aims
Methods
Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals. This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction.Aims
Methods
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods
It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods
Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Aims
Methods
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
We reviewed the radiographs of 864 Charnley and STH (Zimmer) cemented total hip arthroplasties with a mean follow-up of seven years (maximum 16 years). Survivorship analysis was used to assess the correlation between radiographic performance and the bony containment or the coronal orientation of the acetabular cup. The
Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis. A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis.Aims
Methods
The December 2014 Hip &
Pelvis Roundup360 looks at: Sports and total hips; topical tranexamic acid and blood conservation in hip replacement; blind spots and biases in hip research; no recurrence in cam lesions at two years; to drain or not to drain?; sonication and diagnosis of implant associated infection; and biomarkers and periprosthetic infection
Malposition of the acetabular component is a risk factor for post-operative dislocation after total hip replacement (THR). We have investigated the influence of the orientation of the acetabular component on the probability of dislocation. Radiological anteversion and abduction of the component of 127 hips which dislocated post-operatively were measured by Einzel-Bild-Röentgen-Analysis and compared with those in a control group of 342 patients. In the control group, the mean value of anteversion was 15° and of abduction 44°. Patients with anterior dislocation after primary THR showed significant differences in the mean angle of anteversion (17°), and abduction (48°) as did patients with posterior dislocation (anteversion 11°, abduction 42°). After revision patients with posterior dislocation showed significant differences in anteversion (12°) and abduction (40°). Our results demonstrate the importance of accurate positioning of the acetabular component in order to reduce the frequency of subsequent dislocations. Radiological anteversion of 15° and abduction of 45° are the lowest at-risk values for dislocation.
Our aim was to determine if the height of the cup, lateralisation or the abduction angle correlated with functional outcome or survivorship in revision total hip replacement in patients with a previous diagnosis of developmental dysplasia of the hip. A retrospective investigation of 51 patients (63 hips) who had undergone revision total hip replacement was performed. The mean duration of follow-up was 119 months. Forty-one patients (52 hips) were available for both determination of functional outcome and survivorship analysis. Ten patients (11 hips) were only available for survivorship analysis. The height of the cup was found to have a statistically significant correlation with functional outcome and a high hip centre correlated with a worse outcome score. Patients with a hip centre of less than 3.5 cm above the anatomical level had a statistically better survivorship of the cup than those with centres higher than this. Restoration of the height of the centre of the hip to as near the anatomical position as possible improved functional outcome and survivorship of the cup.