Advertisement for orthosearch.org.uk
Results 1 - 20 of 174
Results per page:
Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims

Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation.

Methods

Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1597 - 1603
1 Dec 2016
Meermans G Doorn JV Kats J

Aims

One goal of total hip arthroplasty is to restore normal hip anatomy. The aim of this study was to compare displacement of the centre of rotation (COR) using a standard reaming technique with a technique in which the acetabulum was reamed immediately peripherally and referenced off the rim.

Patients and Methods

In the first cohort the acetabulum was reamed to the floor followed by sequentially larger reamers. In the second cohort the acetabulum was only reamed peripherally, starting with a reamer the same size as the native femoral head. Anteroposterior pelvic radiographs were analysed for acetabular floor depth and vertical and horizontal position of the COR.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims. Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results. The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion. It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841


Bone & Joint Research
Vol. 10, Issue 1 | Pages 22 - 30
1 Jan 2021
Clement ND Gaston P Bell A Simpson P Macpherson G Hamilton DF Patton JT

Aims. The primary aim of this study was to compare the hip-specific functional outcome of robotic assisted total hip arthroplasty (rTHA) with manual total hip arthroplasty (mTHA) in patients with osteoarthritis (OA). Secondary aims were to compare general health improvement, patient satisfaction, and radiological component position and restoration of leg length between rTHA and mTHA. Methods. A total of 40 patients undergoing rTHA were propensity score matched to 80 patients undergoing mTHA for OA. Patients were matched for age, sex, and preoperative function. The Oxford Hip Score (OHS), Forgotten Joint Score (FJS), and EuroQol five-dimension questionnaire (EQ-5D) were collected pre- and postoperatively (mean 10 months (SD 2.2) in rTHA group and 12 months (SD 0.3) in mTHA group). In addition, patient satisfaction was collected postoperatively. Component accuracy was assessed using Lewinnek and Callanan safe zones, and restoration of leg length were assessed radiologically. Results. There were no significant differences in the preoperative demographics (p ≥ 0.781) or function (p ≥ 0.383) between the groups. The postoperative OHS (difference 2.5, 95% confidence interval (CI) 0.1 to 4.8; p = 0.038) and FJS (difference 21.1, 95% CI 10.7 to 31.5; p < 0.001) were significantly greater in the rTHA group when compared with the mTHA group. However, only the FJS was clinically significantly greater. There was no difference in the postoperative EQ-5D (difference 0.017, 95% CI -0.042 to 0.077; p = 0.562) between the two groups. No patients were dissatisfied in the rTHA group whereas six were dissatisfied in the mTHA group, but this was not significant (p = 0.176). rTHA was associated with an overall greater rate of component positioning in a safe zone (p ≤ 0.003) and restoration of leg length (p < 0.001). Conclusion. Patients undergoing rTHA had a greater hip-specific functional outcome when compared to mTHA, which may be related to improved component positioning and restoration of leg length. However, there was no difference in their postoperative generic health or rate of satisfaction. Cite this article: Bone Joint Res 2021;10(1):22–30


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 352 - 358
1 Apr 2024
Wilson JM Trousdale RT Bedard NA Lewallen DG Berry DJ Abdel MP

Aims. Dislocation remains a leading cause of failure following revision total hip arthroplasty (THA). While dual-mobility (DM) bearings have been shown to mitigate this risk, options are limited when retaining or implanting an uncemented shell without modular DM options. In these circumstances, a monoblock DM cup, designed for cementing, can be cemented into an uncemented acetabular shell. The goal of this study was to describe the implant survival, complications, and radiological outcomes of this construct. Methods. We identified 64 patients (65 hips) who had a single-design cemented DM cup cemented into an uncemented acetabular shell during revision THA between 2018 and 2020 at our institution. Cups were cemented into either uncemented cups designed for liner cementing (n = 48; 74%) or retained (n = 17; 26%) acetabular components. Median outer head diameter was 42 mm. Mean age was 69 years (SD 11), mean BMI was 32 kg/m. 2. (SD 8), and 52% (n = 34) were female. Survival was assessed using Kaplan-Meier methods. Mean follow-up was two years (SD 0.97). Results. There were nine cemented DM cup revisions: three for periprosthetic joint infection, three for acetabular aseptic loosening from bone, two for dislocation, and one for a broken cup-cage construct. The two-year survivals free of aseptic DM revision and dislocation were both 92%. There were five postoperative dislocations, all in patients with prior dislocation or abductor deficiency. On radiological review, the DM cup remained well-fixed at the cemented interface in all but one case. Conclusion. While dislocation was not eliminated in this series of complex revision THAs, this technique allowed for maximization of femoral head diameter and optimization of effective acetabular component position during cementing. Of note, there was only one failure at the cemented interface. Cite this article: Bone Joint J 2024;106-B(4):352–358


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims. The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients. Methods. A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system. Results. PT, FCA, ΔPT, and ΔFCA were significantly correlated with the severity of lumbar DDD. Patients with severe lumbar DDD showed marked differences in PT with changes in posture; there was an anterior tilt (-16.6° vs -12.3°, p = 0.047) in the supine position, but a posterior tilt in an upright posture (1.0° vs -3.6°, p = 0.005). A significant decrease in ΔFCA during stand-to-swing (8.6° vs 12.8°, p = 0.038) and stand-to-stance (7.3° vs 10.6°,p = 0.042) was observed in the severe lumbar DDD group. Conclusion. There were marked differences in the relationship between PT and posture in patients with severe lumbar DDD compared with healthy controls. Clinical decision-making should consider the relationship between PT and FCA in order to reduce the risk of impingement at large ranges of motion in THA patients with lumbar DDD. Cite this article: Bone Joint J 2020;102-B(11):1505–1510


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 47 - 51
1 Jul 2020
Kazarian GS Schloemann DT Barrack TN Lawrie CM Barrack RL

Aims. The aims of this study were to determine the change in the sagittal alignment of the pelvis and the associated impact on acetabular component position at one-year follow-up after total hip arthroplasty (THA). Methods. This study represents the one-year follow-up of a previous short-term study at our institution. Using the patient population from our prior study, the radiological pelvic ratio was assessed in 91 patients undergoing THA, of whom 50 were available for follow-up of at least one year (median 1.5; interquartile range (IQR) 1.1 to 2.0). Anteroposterior radiographs of the pelvis were obtained in the standing position preoperatively and at one year postoperatively. Pelvic ratio was defined as the ratio between the vertical distance from the inferior sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior SI joints. Apparent acetabular component position changes were determined from the change in pelvic ratio. A change of at least 5° was considered clinically meaningful. Results. Pelvic ratio decreased (posterior tilt) in 54.0% (27) of cases, did not change significantly in 34.0% (17) of cases, and increased (anterior tilt) in 12.0% (6) of cases when comparing preoperative to one-year postoperative radiographs. This would correspond with 5° to 10° of abduction error in 22.0% of cases and > 10° of error in 6.0%. Likewise, this would correspond with 5° to 10° of version error in 22.0% of cases and > 10° of error in 44.0%. Conclusion. Pelvic sagittal alignment is dynamic and variable after THA, and these changes persist to the one-year postoperative period, altering the orientation of the acetabular component. Surgeons who individualize the acetabular component placement based on preoperative functional radiographs should consider that the rotation of the pelvis (and thus the component version and inclination) changes one year postoperatively. Cite this article: Bone Joint J 2020;102-B(7 Supple B):47–51


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 17 - 24
1 Jul 2021
Vigdorchik JM Sharma AK Buckland AJ Elbuluk AM Eftekhary N Mayman DJ Carroll KM Jerabek SA

Aims. Patients with spinal pathology who undergo total hip arthroplasty (THA) have an increased risk of dislocation and revision. The aim of this study was to determine if the use of the Hip-Spine Classification system in these patients would result in a decreased rate of postoperative dislocation in patients with spinal pathology. Methods. This prospective, multicentre study evaluated 3,777 consecutive patients undergoing THA by three surgeons, between January 2014 and December 2019. They were categorized using The Hip-Spine Classification system: group 1 with normal spinal alignment; group 2 with a flatback deformity, group 2A with normal spinal mobility, and group 2B with a stiff spine. Flatback deformity was defined by a pelvic incidence minus lumbar lordosis of > 10°, and spinal stiffness was defined by < 10° change in sacral slope from standing to seated. Each category determined a patient-specific component positioning. Survivorship free of dislocation was recorded and spinopelvic measurements were compared for reliability using intraclass correlation coefficient. Results. A total of 2,081 patients met the inclusion criteria. There were 987 group 1A, 232 group 1B, 715 group 2A, and 147 group 2B patients. A total of 70 patients had a lumbar fusion, most had L4-5 (16; 23%) or L4-S1 (12; 17%) fusions; 51 patients (73%) had one or two levels fused, and 19 (27%) had > three levels fused. Dual mobility (DM) components were used in 166 patients (8%), including all of those in group 2B and with > three level fusions. Survivorship free of dislocation at five years was 99.2% with a 0.8% dislocation rate. The correlation coefficient was 0.83 (95% confidence interval 0.89 to 0.91). Conclusion. This is the largest series in the literature evaluating the relationship between hip-spine pathology and dislocation after THA, and guiding appropriate treatment. The Hip-Spine Classification system allows surgeons to make appropriate evaluations preoperatively, and it guides the use of DM components in patients with spinopelvic pathology in order to reduce the risk of dislocation in these high-risk patients. Cite this article: Bone Joint J 2021;103-B(7 Supple B):17–24


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 45 - 50
1 Jun 2019
Schloemann DT Edelstein AI Barrack RL

Aims. The aims of this study were to determine the change in pelvic sagittal alignment before, during, and after total hip arthroplasty (THA) undertaken with the patient in the lateral decubitus position, and to determine the impact of these changes on acetabular component position. Patients and Methods. We retrospectively compared the radiological pelvic ratio among 91 patients undergoing THA. In total, 41 patients (46%) were female. The mean age was 61.6 years (. sd. 10.7) and the mean body mass index (BMI) was 20.0 kg/m. 2. (. sd. 5.5). Anteroposterior radiographs were obtained: in the standing position preoperatively and at six weeks postoperatively; in the lateral decubitus position after trial reduction intraoperatively; and in the supine position in the post-anaesthesia care unit. Pelvic ratio was defined as the ratio between the vertical distance from the inferior aspect of the sacroiliac (SI) joints to the superior pubic symphysis and the horizontal distance between the inferior aspect of the SI joints. Changes in the apparent component position based on changes in pelvic ratio were determined, with a change of > 5° considered clinically significant. Analyses were performed using Wilcoxon’s signed-rank test, with p < 0.05 considered significant. Results. Intraoperatively, in the lateral decubitus position, the pelvic ratio increased (anterior tilt) in 69.4% of cases, did not change significantly in 20.4%, and decreased (posterior tilt) in 10.2% of cases. When six-week postoperative radiographs were compared with preoperative radiographs, the pelvic ratio decreased in 44.9% of cases, did not change significantly in 42.3%, and increased in 12.8% of cases. This change in alignment correlated with a change in acetabular component version of > 5° in 79.6% of cases intraoperatively and 57.7% of cases at six weeks postoperatively. Conclusion. Changes in pelvic sagittal pelvic position occur throughout THA that, if unaccounted for, introduce errors in acetabular component placement. The use of intraoperative imaging may help the appropriate placement of the acetabular component. Cite this article: Bone Joint J 2019;101-B(6 Supple B):45–50


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 500 - 506
1 Mar 2021
Leonard HJ Ohly NE

Aims. The purpose of this study was to compare the clinical, radiological, and patient-reported outcome measures (PROMs) in the first 100 consecutive patients undergoing total hip arthroplasty (THA) via a direct superior approach (DSA) with a matched group of patients undergoing THA by the same surgeon, using a posterolateral approach (PLA). Methods. This was a retrospective single surgeon study comparing the first 100 consecutive DSA THA patients with a matched group of patients using a standard PLA. Case notes were examined for patient demographics, length of hospital stay, operating time, intra- and postoperative complications, pain score, satisfaction score, and Oxford Hip Score (OHS). Leg length discrepancy and component positioning were measured from postoperative plain radiographs. Results. The DSA patients had a shorter length of hospital stay (mean 2.09 days (SD 1.20) DSA vs 2.74 days (SD 1.17) PLA; p < 0.001) and shorter time to discharge from the inpatient physiotherapy teams (mean 1.44 days (SD 1.17) DSA vs 1.93 days (SD 0.96) PLA; p < 0.001). There were no differences in operating time (p = 0.505), pain levels up to postoperative day 1 (p = 0.106 to p =0.242), OHS (p = 0.594 to p = 0.815), satisfaction levels (p = 0.066 to p = 0.299), stem alignment (p = 0.240), acetabular component inclination (p < 0.001) and anteversion (p < 0.001), or leg length discrepancy (p = 0.134). Conclusion. While the DSA appears safe and was not associated with a significant difference in PROMs, radiological findings, or intraoperative or postoperative complications, a randomized controlled trial with functional outcomes in the postoperative phase is needed to evaluate this surgical approach formally. Cite this article: Bone Joint J 2021;103-B(3):500–506


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1766 - 1773
1 Dec 2021
Sculco PK Windsor EN Jerabek SA Mayman DJ Elbuluk A Buckland AJ Vigdorchik JM

Aims. Spinopelvic mobility plays an important role in functional acetabular component position following total hip arthroplasty (THA). The primary aim of this study was to determine if spinopelvic hypermobility persists or resolves following THA. Our second aim was to identify patient demographic or radiological factors associated with hypermobility and resolution of hypermobility after THA. Methods. This study investigated patients with preoperative posterior hypermobility, defined as a change in sacral slope (SS) from standing to sitting (ΔSS. stand-sit. ) ≥ 30°. Radiological spinopelvic parameters, including SS, pelvic incidence (PI), lumbar lordosis (LL), PI-LL mismatch, anterior pelvic plane tilt (APPt), and spinopelvic tilt (SPT), were measured on preoperative imaging, and at six weeks and a minimum of one year postoperatively. The severity of bilateral hip osteoarthritis (OA) was graded using Kellgren-Lawrence criteria. Results. A total of 136 patients were identified as having preoperative spinopelvic hypermobility. At one year after THA, 95% (129/136) of patients were no longer categorized as hypermobile on standing and sitting radiographs (ΔSS. stand-sit. < 30°). Mean ΔSS. stand-sit. decreased from 36.4° (SD 5.1°) at baseline to 21.4° (SD 6.6°) at one year (p < 0.001). Mean SS. seated. increased from baseline (11.4° (SD 8.8°)) to one year after THA by 11.5° (SD 7.4°) (p < 0.001), which correlates to an 8.5° (SD 5.5°) mean decrease in seated functional cup anteversion. Contralateral hip OA was the only radiological predictor of hypermobility persisting at one year after surgery. The overall reoperation rate was 1.5%. Conclusion. Spinopelvic hypermobility was found to resolve in the majority (95%) of patients one year after THA. The increase in SS. seated. was clinically significant, suggesting that current target recommendations for the hypermobile patient (decreased anteversion and inclination) should be revisited. Cite this article: Bone Joint J 2021;103-B(12):1766–1773


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims. The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). Patients and Methods. A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (. sd. 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared. Results. The system reported accurate values for reconstruction of the hip when compared to those measured postoperatively using CT. The mean deviation from the executed overall hip length and offset were 1.6 mm (. sd. 2.9) and 0.5 mm (. sd. 3.0), respectively. Mean combined anteversion was similar and correlated between intraoperative measurements and postoperative CT measurements (32.5°, . sd. 5.9° versus 32.2°, . sd. 6.4°; respectively; R. 2. = 0.65; p < 0.001). There was a significant correlation between mean intraoperative (40.4°, . sd. 2.1°) acetabular component inclination and mean measured postoperative inclination (40.12°, . sd. 3.0°, R. 2. = 0.62; p < 0.001). There was a significant correlation between mean intraoperative version (23.2°, . sd. 2.3°), and postoperatively measured version (23.0°, . sd. 2.4°; R. 2. = 0.76; p < 0.001). Preoperative and postoperative femoral component anteversion were significantly correlated with one another (R. 2. = 0.64; p < 0.001). Three patients had CT scan measurements that differed substantially from the intraoperative robotic measurements when evaluating stem anteversion. Conclusion. This is the first study to evaluate the success of hip reconstruction overall using robotic-assisted THA. The overall hip reconstruction obtained in the operating theatre using robotic assistance accurately correlated with the postoperative component position assessed independently using CT based 3D modelling. Clinical correlation during surgery should continue to be practiced and compared with observed intraoperative robotic values. Cite this article: Bone Joint J 2018;100-B:1303–9


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 37 - 45
1 Jan 2017
Stefl M Lundergan W Heckmann N McKnight B Ike H Murgai R Dorr LD

Aims. Posterior tilt of the pelvis with sitting provides biological acetabular opening. Our goal was to study the post-operative interaction of skeletal mobility and sagittal acetabular component position. Materials and Methods. This was a radiographic study of 160 hips (151 patients) who prospectively had lateral spinopelvic hip radiographs for skeletal and implant measurements. Intra-operative acetabular component position was determined according to the pre-operative spinal mobility. Sagittal implant measurements of ante-inclination and sacral acetabular angle were used as surrogate measurements for the risk of impingement, and intra-operative acetabular component angles were compared with these. Results. Post-operatively, ante-inclination and sacral acetabular angles were within normal range in 133 hips (83.1%). A total of seven hips (4.4%) had pathological imbalance and were biologically or surgically fused hips. In all, 23 of 24 hips had pre-operative dangerous spinal imbalance corrected. Conclusions. In all, 145 of 160 hips (90%) were considered safe from impingement. Patients with highest risk are those with biological or surgical spinal fusion; patients with dangerous spinal imbalance can be safe with correct acetabular component position. The clinical relevance of the study is that it correlates acetabular component position to spinal pelvic mobility which provides guidelines for total hip arthroplasty. Cite this article: Bone Joint J 2017;99-B(1 Supple A):37–45


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 808 - 816
1 Jul 2019
Eftekhary N Shimmin A Lazennec JY Buckland A Schwarzkopf R Dorr LD Mayman D Padgett D Vigdorchik J

There remains confusion in the literature with regard to the spinopelvic relationship, and its contribution to ideal acetabular component position. Critical assessment of the literature has been limited by use of conflicting terminology and definitions of new concepts that further confuse the topic. In 2017, the concept of a Hip-Spine Workgroup was created with the first meeting held at the American Academy of Orthopedic Surgeons Annual Meeting in 2018. The goal of this workgroup was to first help standardize terminology across the literature so that as a topic, multiple groups could produce literature that is immediately understandable and applicable. This consensus review from the Hip-Spine Workgroup aims to simplify the spinopelvic relationship, offer hip surgeons a concise summary of available literature, and select common terminology approved by both hip surgeons and spine surgeons for future research. Cite this article: Bone Joint J 2019;101-B:808–816


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 41 - 46
1 Jul 2020
Ransone M Fehring K Fehring T

Aims. Patients with abnormal spinopelvic mobility are at increased risk for instability. Measuring the change in sacral slope (ΔSS) can help determine spinopelvic mobility preoperatively. Sacral slope (SS) should decrease at least 10° to demonstrate adequate posterior pelvic tilt. There is potential for different ΔSS measurements in the same patient based on sitting posture. The purpose of this study was to determine the effect of sitting posture on the ΔSS in patients undergoing total hip arthroplasty (THA). Methods. In total, 51 patients undergoing THA were reviewed to quantify the variability in preoperative spinopelvic mobility when measuring two different sitting positions using SS for planning. Results. A total of 32 patients had standardized relaxed sitting radiographs, while 35 patients had standardized flexed sitting images. Of the 32 patients with relaxed sitting views, the mean ΔSS was 20.7° (SD 8.9°). No patients exhibited an increase in SS during relaxed sitting (i.e. anterior pelvic tilt or so-called reverse accommodation). Of the 35 patients with flexed sitting radiographs, the mean ΔSS was only 2.1° (SD 9.7°) with 16/35 (45.71%) showing anterior pelvic tilt, or so-called reverse accommodation, unexpectedly increasing the sitting SS compared to the standing SS. Overall, 18 patients had both relaxed sitting and flexed sitting radiographs. In patients with both types of sitting radiographs, the mean relaxed sit to stand ΔSS was 18.06° (SD 6.07°), while only a 3.00° (SD 10.53°) ΔSS was noted when flexed sitting. There was a mean ΔSS difference of 15.06° (SD 7.67°) noted in the same patient cohort depending on sitting posture (p < 0.001). Conclusion. A 15° mean difference was noted depending on the sitting posture of the patient. Since decisions on component position can be made on preoperative lateral sit-stand radiographs, postural standardization is crucial. If using ΔSS for preoperative planning, the relaxed sitting radiograph is preferred. Cite this article: Bone Joint J 2020;102-B(7 Supple B):41–46


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 11 - 18
1 Jan 2019
Kayani B Konan S Thakrar RR Huq SS Haddad FS

Objectives. The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, component inclination, component version, and leg-length correction. Materials and Methods. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (. sd. 5.2) vs 67.5 years (. sd. 5.8) (p = 0.25); body mass index (27.4 kg/m. 2. (. sd. 2.1) vs 26.9 kg/m. 2. (. sd. 2.2); p = 0.39); and laterality of surgery (right = 28, left = 22 vs right = 12, left = 13; p = 0.78). All operative procedures were undertaken by a single surgeon using the posterior approach. Two independent blinded observers recorded all radiological outcomes of interest using plain radiographs. Results. The correlation coefficient was 0.92 (95% confidence interval (CI) 0.88 to 0.95) for intraobserver agreement and 0.88 (95% CI 0.82 to 0.94) for interobserver agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p < 0.001) and vertical (p < 0.001) centres of rotation, and improved preservation of the patient’s native combined offset (p < 0.001) compared with conventional THA. Robotic THA improved accuracy in positioning of the acetabular component within the combined safe zones of inclination and anteversion described by Lewinnek et al (p = 0.02) and Callanan et al (p = 0.01) compared with conventional THA. There was no difference between the two treatment groups in achieving the planned leg-length correction (p = 0.10). Conclusion. Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular component positioning within the safe zones of inclination and anteversion compared with conventional manual THA


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 891 - 897
1 Jul 2018
Teeter MG Lanting BA Naudie DD McCalden RW Howard JL MacDonald SJ

Aims. The aim of this study was to determine whether there is a difference in the rate of wear between acetabular components positioned within and outside the ‘safe zones’ of anteversion and inclination angle. Patients and Methods. We reviewed 100 hips in 94 patients who had undergone primary total hip arthroplasty (THA) at least ten years previously. Patients all had the same type of acetabular component with a bearing couple which consisted of a 28 mm cobalt-chromium head on a highly crosslinked polyethylene (HXLPE) liner. A supine radiostereometric analysis (RSA) examination was carried out which acquired anteroposterior (AP) and lateral paired images. Acetabular component anteversion and inclination angles were measured as well as total femoral head penetration, which was divided by the length of implantation to determine the rate of polyethylene wear. Results. The mean anteversion angle was 19.4° (-15.2° to 48°, . sd. 11.4°), the mean inclination angle 43.4° (27.3° to 60.5°, . sd. 6.6°), and the mean wear rate 0.055 mm/year (. sd. 0.060). Exactly half of the hips were positioned inside the ‘safe zone’. There was no difference (median difference, 0.012 mm/year; p = 0.091) in the rate of wear between acetabular components located within or outside the ‘safe zone’. When compared to acetabular components located inside the ‘safe zone’, the wear rate was no different for acetabular components that only achieved the target anteversion angle (median difference, 0.012 mm/year; p = 0.138), target inclination angle (median difference, 0.013 mm/year; p = 0.354), or neither target (median difference, 0.012 mm/year; p = 0.322). Conclusion. Placing the acetabular component within or outside the ‘safe zone’ did not alter the wear rate of HXLPE at long-term follow-up to a level that risked osteolysis. HXLPE appears to be a forgiving bearing material in terms of articular surface wear, but care must still be taken to position the acetabular component correctly so that the implant is stable. Cite this article: Bone Joint J 2018;100-B:891-7


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims

The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system.

Methods

This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.