Advertisement for orthosearch.org.uk
Results 1 - 20 of 206
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 79 - 84
1 Jun 2020
Abdelfadeel W Houston N Star A Saxena A Hozack WJ

Aims. The aim of this study was to analyze the true costs associated with preoperative CT scans performed for robotic-assisted total knee arthroplasty (RATKA) planning and to determine the value of a formal radiologist’s report of these studies. Methods. We reviewed 194 CT reports of 176 sequential patients who underwent primary RATKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might change the management of the patient. Payments for the scans, including the technical and professional components, for 330 patients at two hospitals were also recorded and compared. Results. There were 82 incidental findings in 61 CT studies, one of which led to a recommendation for additional testing. Across both institutions, the mean total payment for a preoperative scan was $446 ($8 to $3,870). The mean patient payment was $71 ($0 to $2,690). There was wide variation in payments between the institutions. In Institution A, the mean total payment was $258 ($168 to $264), with a mean patient payment of $57 ($0 to $100). The mean technical payment in this institution was $211 ($8 to $856), while the mean professional payment was $48 ($0 to $66). In Institution B, the mean total payment was $636 ($37 to $3,870), with a mean patient payment of $85 ($0 to $2,690). Conclusion. The total cost of a CT scan is low and a minimal part of the overall cost of the RATKA. No incidental findings identified on imaging led to a change in management, suggesting that the professional component could be eliminated to reduce costs. Further studies need to take into account the patient perspective and the wide variation in total costs and patient payments across institutions and insurances. Cite this article: Bone Joint J 2020;102-B(6 Supple A):79–84


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 915 - 921
1 Aug 2019
Beckers L Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims. Altered alignment and biomechanics are thought to contribute to the progression of osteoarthritis (OA) in the native compartments after medial unicompartmental knee arthroplasty (UKA). The aim of this study was to evaluate the bone activity and remodelling in the lateral tibiofemoral and patellofemoral compartment after medial mobile-bearing UKA. Patients and Methods. In total, 24 patients (nine female, 15 male) with 25 medial Oxford UKAs (13 left, 12 right) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively and at one and two years postoperatively, along with standard radiographs and clinical outcome scores. The mean patient age was 62 years (40 to 78) and the mean body mass index (BMI) was 29.7 kg/m2 (23.6 to 42.2). Mean osteoblastic activity was evaluated using a tracer localization scheme with volumes of interest (VOIs). Normalized mean tracer values were calculated as the ratio between the mean tracer activity in a VOI and background activity in the femoral diaphysis. Results. Significant reduction of normalized tracer activity was observed one year postoperatively in tibial and femoral VOIs adjacent to the joint line in the lateral compartment. Patellar VOIs and remaining femoral VOIs demonstrated a significant, diminished normalized tracer activity at final follow-up. Conclusion. The osteoblastic bone activity in the native compartments decreased significantly after treatment of medial end-stage OA with a UKA, implying reduced stress to the subchondral bone in the retained compartments after a UKA. Cite this article: Bone Joint J 2019;101-B:915–921


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 786 - 792
1 Jun 2016
Schotanus MGM Sollie R van Haaren EH Hendrickx RPM Jansen EJP Kort NP

Aims. This prospective randomised controlled trial was designed to evaluate the outcome of both the MRI- and CT-based patient-specific matched guides (PSG) from the same manufacturer. Patients and Methods. A total of 137 knees in 137 patients (50 men, 87 women) were included, 67 in the MRI- and 70 in the CT-based PSG group. Their mean age was 68.4 years (47.0 to 88.9). Outcome was expressed as the biomechanical limb alignment (centre hip-knee-ankle: HKA-axis) achieved post-operatively, the position of the individual components within 3° of the pre-operatively planned alignment, correct planned implant size and operative data (e.g. operating time and blood loss). Results. The patient demographics (e.g. age, body mass index), correct planned implant size and operative data were not significantly different between the two groups. The proportion of outliers in the coronal and sagittal plane ranged from 0% to 21% in both groups. Only the number of outliers for the posterior slope of the tibial component showed a significant difference (p = 0.004) with more outliers in the CT group (n = 9, 13%) than in the MRI group (0%). . Conclusion. The post-operative HKA-axis was comparable in the MRI- and CT-based PSGs, but there were significantly more outliers for the posterior slope in the CT-based PSGs. Take home message: Alignment with MRI-based PSG is at least as good as, if not better, than that of the CT-based PSG, and is the preferred imaging modality when performing TKA with use of PSG. Cite this article: Bone Joint J 2016;98-B:786–92


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1485 - 1490
1 Nov 2014
Kim CW Seo SS Kim JH Roh SM Lee CR

The aim of this study was to find anatomical landmarks for rotational alignment of the tibial component in total knee replacement (TKR) in a CT-based study. Pre-operative CT scanning was performed on 94 South Korean patients (nine men, 85 women, 188 knees) with osteoarthritis of the knee joint prior to TKR. The tibial anteroposterior (AP) axis was defined as a line perpendicular to the femoral surgical transepicondylar axis and passing through the centre of the posterior cruciate ligament (PCL). The angles between the defined tibial AP axis and anatomical landmarks at various levels of the tibia were measured. The mean values of the angles between the defined tibial AP axis and the line connecting the anterior border of the proximal third of the tibia to the centre of the PCL was -0.2° (-17 to 14.1, . sd. 4.1). This was very close to the defined tibial axis, and remained so regardless of lower limb alignment and the degree of tibial bowing. Therefore, AP axis defined as described, is a reliable anatomical landmark for rotational alignment of tibial components. Cite this article: Bone Joint J 2014; 96-B:1485–90


Bone & Joint Open
Vol. 3, Issue 5 | Pages 383 - 389
1 May 2022
Motesharei A Batailler C De Massari D Vincent G Chen AF Lustig S

Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of predictions were within 15 minutes of actual operating time, with 73% within ten minutes. The predictive model including demographic data and CT scans showed that 94% of predictions were within 15 minutes of actual operating time and 88% within ten minutes. Conclusion. The primary factors for predicting robotic-assisted TKA operating time were surgeon, patient weight, and osteophyte volume. This study demonstrates that incorporating 3D patient-specific data can improve operating time predictions models, which may lead to improved operating room planning and efficiency. Cite this article: Bone Jt Open 2022;3(5):383–389


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 28 - 37
1 Jan 2024
Gupta S Sadczuk D Riddoch FI Oliver WM Davidson E White TO Keating JF Scott CEH

Aims. This study aims to determine the rate of and risk factors for total knee arthroplasty (TKA) after operative management of tibial plateau fractures (TPFs) in older adults. Methods. This is a retrospective cohort study of 182 displaced TPFs in 180 patients aged ≥ 60 years, over a 12-year period with a minimum follow-up of one year. The mean age was 70.7 years (SD 7.7; 60 to 89), and 139/180 patients (77.2%) were female. Radiological assessment consisted of fracture classification; pre-existing knee osteoarthritis (OA); reduction quality; loss of reduction; and post-traumatic OA. Fracture depression was measured on CT, and the volume of defect estimated as half an oblate spheroid. Operative management, complications, reoperations, and mortality were recorded. Results. Nearly half of the fractures were Schatzker II AO B3.1 fractures (n = 85; 47%). Radiological knee OA was present at fracture in 59/182 TPFs (32.6%). Primary management was fixation in 174 (95.6%) and acute TKA in eight (4.4%). A total of 13 patients underwent late TKA (7.5%), most often within two years. By five years, 21/182 12% (95% confidence interval (CI) 6.0 to 16.7) had required TKA. Larger volume defects of greater depth on CT (median 15.9 mm vs 9.4 mm; p < 0.001) were significantly associated with TKA requirement. CT-measured joint depression of > 12.8 mm was associated with TKA requirement (area under the curve (AUC) 0.766; p = 0.001). Severe joint depression of > 15.5 mm (hazard ratio (HR) 6.15 (95% CI 2.60 to 14.55); p < 0.001) and pre-existing knee OA (HR 2.70 (95% CI 1.14 to 6.37); p = 0.024) were independently associated with TKA requirement. Where patients with severe joint depression of > 15.5 mm were managed with fixation, 11/25 ultimately required TKA. Conclusion. Overall, 12% of patients aged ≥ 60 years underwent TKA within five years of TPF. Severe joint depression and pre-existing knee arthritis were independent risk factors for both post-traumatic OA and TKA. These features should be investigated as potential indications for acute TKA in older adults with TPFs. Cite this article: Bone Joint J 2024;106-B(1):28–37


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims. Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. Methods. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m. 2. (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research. Results. Significant reduction of tracer activity from the preoperative situation was found in femoral and anteromedial tibial VOIs adjacent to the UKA components. Temporarily increased osteoblastic bone activity was observed in VOIs comprising the UKA keel structure at one year postoperatively compared to the preoperative activity. Persistent higher tracer uptake was found in the posterior tibial cortex at final follow-up. Multivariate analysis showed no statistical difference in osteoblastic bone activity underneath cemented or cementless components. Conclusion. Well-functioning medial mobile-bearing UKAs showed distinct changes in patterns of normalized bone tracer activity in the different VOIs adjacent to the prosthetic components, regardless of their type of fixation. Compared to the preoperative situation, persistent high bone activity was found underneath the keel and the posterior tibial cortex at final follow-up, with significant reduced activity only being identified in femoral and anteromedial tibial VOIs. Cite this article: Bone Joint J 2022;104-B(1):34–44


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


Bone & Joint Research
Vol. 10, Issue 8 | Pages 467 - 473
2 Aug 2021
Rodríguez-Collell JR Mifsut D Ruiz-Sauri A Rodríguez-Pino L González-Soler EM Valverde-Navarro AA

Aims. The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. Methods. In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level. Results. At the epiphyseal level, Technique 2 gave the greatest depth compared to the other investigated techniques. At the endomedular metaphyseal level, Technique 1 showed greater cement penetration than the other techniques. Conclusion. The best metaphyseal cementation technique of the tibial component is bone cementation with cement restrictor. Additionally, if full tibial component cementation is to be done, the cement volume used should be about 40 g of cement, and not the usual 20 g. Cite this article: Bone Joint Res 2021;10(8):467–473


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 65 - 69
1 Jan 2014
Gutowski CJ Zmistowski BM Clyde CT Parvizi J

The rate of peri-prosthetic infection following total joint replacement continues to rise, and attempts to curb this trend have included the use of antibiotic-loaded bone cement at the time of primary surgery. We have investigated the clinical- and cost-effectiveness of the use of antibiotic-loaded cement for primary total knee replacement (TKR) by comparing the rate of infection in 3048 TKRs performed without loaded cement over a three-year period versus the incidence of infection after 4830 TKRs performed with tobramycin-loaded cement over a later period of time of a similar duration. In order to adjust for confounding factors, the rate of infection in 3347 and 4702 uncemented total hip replacements (THR) performed during the same time periods, respectively, was also examined. There were no significant differences in the characteristics of the patients in the different cohorts.

The absolute rate of infection increased when antibiotic-loaded cement was used in TKR. However, this rate of increase was less than the rate of increase in infection following uncemented THR during the same period. If the rise in the rate of infection observed in THR were extrapolated to the TKR cohort, 18 additional cases of infection would have been expected to occur in the cohort receiving antibiotic-loaded cement, compared with the number observed. Depending on the type of antibiotic-loaded cement that is used, its cost in all primary TKRs ranges between USD $2112.72 and USD $112 606.67 per case of infection that is prevented.

Cite this article: Bone Joint J 2014;96-B:65–9.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518


Bone & Joint Open
Vol. 4, Issue 11 | Pages 889 - 898
23 Nov 2023
Clement ND Fraser E Gilmour A Doonan J MacLean A Jones BG Blyth MJG

Aims

To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA).

Methods

This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 868 - 873
1 Jul 2020
Yang G Dai Y Dong C Kang H Niu J Lin W Wang F

Aims. The purpose of this study was to explore the correlation between femoral torsion and morphology of the distal femoral condyle in patients with trochlear dysplasia and lateral patellar instability. Methods. A total of 90 patients (64 female, 26 male; mean age 22.1 years (SD 7.2)) with lateral patellar dislocation and trochlear dysplasia who were awaiting surgical treatment between January 2015 and June 2019 were retrospectively analyzed. All patients underwent CT scans of the lower limb to assess the femoral torsion and morphology of the distal femur. The femoral torsion at various levels was assessed using the a) femoral anteversion angle (FAA), b) proximal and distal anteversion angle, c) angle of the proximal femoral axis-anatomical epicondylar axis (PFA-AEA), and d) angle of the AEA–posterior condylar line (AEA-PCL). Representative measurements of distal condylar length were taken and parameters using the ratios of the bianterior condyle, biposterior condyle, bicondyle, anterolateral condyle, and anteromedial condyle were calculated and correlated with reference to the AEA, using the Pearson Correlation coefficient. Results. The femoral torsion had a strong correlation with distal condylar morphology. The FAA was significantly correlated with the ratio of the bianterior condyle (r = 0.355; p = 0.009), the AEA-PCL angle (r = 0.340; p = 0.001) and the ratio of the anterolateral condyle and lateral condyle (ALC-LC) (r = 0.309; p = 0.014). The PFA-AEA angle was also significantly correlated with the ratio of the bianterior condyle (r = 0.319; p = 0.008), the AEA-PCL angle (r = 0.231; p = 0.031), and the ratio of ALC-LC (r = 0.261; p = 0.034). In addition, the bianterior condyle ratio showed a significant correlation with the biposterior condyle ratio (r = -0.324; p = 0.027) and the AEA-PCL angle (r = 0.342; p = 0.021). Conclusion. Increased femoral torsion correlated with a prominent anterolateral condyle and a shorter posterolateral condyle compared with the medial condyle. The deformities of the anterior and posterior condyles are combined deformities rather than being isolated and individual deformities in patients with trochlear dysplasia and patella instability. Cite this article: Bone Joint J 2020;102-B(7):868–873


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1259 - 1264
1 Dec 2023
Hurley ET Hughes AJ Savage-Elliott I Dejour D Campbell KA Mulcahey MK Wittstein JR Jazrawi LM

Aims

The aim of this study was to establish consensus statements on the diagnosis, nonoperative management, and indications, if any, for medial patellofemoral complex (MPFC) repair in patients with patellar instability, using the modified Delphi approach.

Methods

A total of 60 surgeons from 11 countries were invited to develop consensus statements based on their expertise in this area. They were assigned to one of seven working groups defined by subtopics of interest within patellar instability. Consensus was defined as achieving between 80% and 89% agreement, strong consensus was defined as between 90% and 99% agreement, and 100% agreement was considered to be unanimous.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 885 - 893
14 Nov 2022
Goshima K Sawaguchi T Horii T Shigemoto K Iwai S

Aims

To evaluate whether low-intensity pulsed ultrasound (LIPUS) accelerates bone healing at osteotomy sites and promotes functional recovery after open-wedge high tibial osteotomy (OWHTO).

Methods

Overall, 90 patients who underwent OWHTO without bone grafting were enrolled in this nonrandomized retrospective study, and 45 patients treated with LIPUS were compared with 45 patients without LIPUS treatment in terms of bone healing and functional recovery postoperatively. Clinical evaluations, including the pain visual analogue scale (VAS) and Japanese Orthopaedic Association (JOA) score, were performed preoperatively as well as six weeks and three, six, and 12 months postoperatively. The progression rate of gap filling was evaluated using anteroposterior radiographs at six weeks and three, six, and 12 months postoperatively.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims

While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA.

Methods

A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims

The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients.

Methods

All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).