The production of particulate
Pain in the distribution of the sciatic nerve is common in the elderly. In the presence of a long-standing joint replacement, consideration should be given as to whether compression might be due to an extraspinal cause. We present three women, in whom a mass of
We present a case in which the growth of an intraosseous cyst arising from the proximal tibiofibular joint appeared to have been increased by polyethylene wear particles from a medial unicompartmental knee replacement. Histological examination of the cyst wall showed a histiocytic response associated with numerous polyethylene wear particles. This case demonstrates that there is a direct communication between the joint cavity and the cyst. Such communication is probably through openings in the articular cartilage large enough to allow the passage of these particles.
We compared wear particles from two different designs of total hip arthroplasty with polycrystalline alumina-ceramic bearings of different production periods (group 1, before ISO 6474: group 2, according to ISO 6474). The neocapsules and interfacial connective tissue membranes were retrieved after mean implantation times of 131 months and 38 months, respectively. Specimen blocks were freed from embedding media, either methylmethacrylate or paraffin and digested in concentrated nitric acid. Particles were then counted and their sizes and composition determined by SEM and energy-dispersive x-ray analysis (EDXA). The mean numbers and sizes of most alumina wear particles did not differ for both production periods, but the larger sizes of particle in group 1 point to more severe surface destruction. The increased metal wear in group 2 was apparently due to alumina-induced abrasion of the stems. In this study the concentrations of particles in the periprosthetic tissues were 2 to 22 times lower than those observed previously with polyethylene and alumina/polyethylene wear couples.
Interfacial membranes collected at revision from 11 failed uncemented Ti-alloy total hip replacements were examined. Particles in the membranes were characterised by electron microscopy, microchemical spectroscopy and particle size analysis. Most were polyethylene and had a mean size of 0.53 micron +/- 0.3. They were similar to the particles seen in the base resin used in the manufacture of the acetabular implants. Relatively few titanium particles were seen. Fragments of bone, stainless steel and silicate were found in small amounts. Most of the polyethylene particles were too small to be seen by light microscopy. Electron microscopy and spectroscopic techniques are required to provide an accurate description of this debris.
Ultra-high-molecular-weight polyethylene (UHMWPE) components for total joint replacement generate wear particles which cause adverse biological tissue reactions leading to osteolysis and loosening. Sterilisation of UHMWPE components by gamma irradiation in air causes chain scissions which initiate a long-term oxidative process that degrades the chemical and mechanical properties of the polyethylene. Using a tri-pin-on-disc tribometer we studied the effect of ageing for ten years after gamma irradiation in air on the volumetric wear, particle size distribution and the number of particles produced by UHMWPE when sliding against a stainless-steel counterface. The aged and irradiated material produced six times more volumetric wear and 34 times more wear particles per unit load per unit sliding distance than non-sterilised UHMWPE. Our findings indicate that oxidative degradation of polyethylene after gamma irradiation in air with ageing produces more wear.
Aims. The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. Methods. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies. Results. At the time of reporting, eight patients (13 implants) had completed lengthening. Osteolysis and periosteal reaction at the junction of the telescopic nail was evident in nine implants. Five patients experienced localized pain and swelling. Macroscopic appearances following retrieval were consistent with corrosion at the telescopic junction. Tissue histology was consistent with effects of focal metallic
The biological significance of cobalt-chromium wear particles from metal-on-metal hip replacements may be different to the effects of the constituent metal ions in solution. Bacteria may be able to discriminate between particulate and ionic forms of these metals because of a transmembrane nickel/cobalt-permease. It is not known whether wear particles are bacteriocidal. We compared the doubling time of coagulase negative staphylococcus, Staphylococcus aureus and methicillin resistant S. aureus when cultured in either wear particles from a metal-on-metal hip simulator, wear particles from a metal-on-polyethylene hip simulator, metal ions in solution or a control. Doubling time halved in metal-on-metal (p = 0.003) and metal-on-polyethylene (p = 0.131) particulate debris compared with the control. Bacterial nickel/cobalt-transporters allow metal ions but not wear particles to cross bacterial membranes. This may be useful for testing the biological characteristics of different
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal
Aims. This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods. TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results. Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal
Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel
Aims. Cardiac magnetic resonance (CMR) was used to assess whether cardiac function or tissue composition was affected in patients with well-functioning metal-on-metal hip resurfacing arthroplasties (MoMHRA) when compared with a group of controls, and to assess if metal ion levels correlated with any of the functional or structural parameters studied. Patients and Methods. In all, 30 participants with no significant cardiac history were enrolled: 20 patients with well-functioning MoMHRA at mean follow-up of 8.3 years post-procedure (ten unilateral, ten bilateral; 17 men, three women) and a case-matched control group of ten non-MoM total hip arthroplasty patients (six men, four women). The mean age of the whole cohort (study group and controls) at the time of surgery was 50.6 years (41.0 to 64.0). Serum levels of cobalt and chromium were measured, and all patients underwent CMR imaging, including cine, T2* measurements, T1 and T2 mapping, late gadolinium enhancement, and strain measurements. Results. None of the MoMHRA patients showed clinically significant cardiac functional abnormality. The MoMHRA patients had larger indexed right and left end diastolic volumes (left ventricular (LV): 74 ml/m. 2. vs 67 ml/m. 2. , p = 0.045; right ventricular: 80 ml/m. 2. vs 71 ml/m. 2. , p = 0.02). There was a small decrease in T2 time in the MoMHRA patients (median 49 ms vs 54 ms; p = 0.0003). Higher metal ion levels were associated with larger LV volumes and with shorter T2 time. Conclusion. Although cardiac function is not clinically adversely affected in patients with well-functioning MoMHRA, modern imaging is able to demonstrate subtle changes in structure and function of the heart. As these changes correlate with systemic ion measurements, they may be consequences of
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to
The most frequent cause of failure after total
hip replacement in all reported arthroplasty registries is peri-prosthetic
osteolysis. Osteolysis is an active biological process initiated
in response to
Objectives. Third-body wear is believed to be one trigger for adverse results
with metal-on-metal (MOM) bearings. Impingement and subluxation
may release metal particles from MOM replacements. We therefore
challenged MOM bearings with relevant debris types of cobalt–chrome
alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate
bone cement (PMMA). Methods. Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range
5 µm to 400 µm) were run in a MOM
The peri-prosthetic tissue response to wear debris
is complex and influenced by various factors including the size, area
and number of particles. We hypothesised that the ‘biologically
active area’ of all metal wear particles may predict the type of
peri-prosthetic tissue response. . Peri-prosthetic tissue was sampled from 21 patients undergoing
revision of a small diameter metal-on-metal (MoM) total hip arthroplasty
(THA) for aseptic loosening. An enzymatic protocol was used for
tissue digestion and scanning electron microscope was used to characterise
particles. Equivalent circle diameters and particle areas were calculated.
Histomorphometric analyses were performed on all tissue specimens.
Aspirates of synovial fluid were collected for analysis of the cytokine
profile analysis, and compared with a control group of patients
undergoing primary THA (n = 11) and revision of a failed ceramic-on-polyethylene
arthroplasty (n = 6). . The overall distribution of the size and area of the particles
in both lymphocyte and
non-lymphocyte-dominated responses were similar; however, the subgroup
with lymphocyte-dominated peri-prosthetic tissue responses had a
significantly larger total number of particles. . 14 cytokines (interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-10,
IL-13, IL-17, interferon (IFN)-γ, and IFN-gamma-inducible protein
10), chemokines (macrophage inflammatory protein (MIP)-1α and MIP-1ß),
and growth factors (granulocyte macrophage colony stimulating factor
(GM-CSF) and platelet derived growth factor) were detected at significantly higher
levels in patients with metal
We present the early clinical and radiological results of Articular Surface Replacement (ASR) resurfacings in 214 hips (192 patients) with a mean follow-up of 43 months (30 to 57). The mean age of the patients was 56 years (28 to 74) and 85 hips (40%) were in 78 women. The mean Harris hip score improved from 52 (11 to 81) to 95 (27 to 100) at two years and the mean University of California, Los Angeles activity score from 3.9 (1 to 10) to 7.4 (2 to 10) in the same period. Narrowing of the neck (to a maximum of 9%) was noted in 124 of 209 hips (60%). There were 12 revisions (5.6%) involving four (1.9%) early fractures of the femoral neck and two (0.9%) episodes of collapse of the femoral head secondary to avascular necrosis. Six patients (2.8%) had failure related to metal
Aseptic loosening of orthopaedic implants is usually attributed to the action of
The survivorship of contemporary resurfacing arthroplasty of the hip using metal-on-metal bearings is better than that of first generation designs, but short-term failures still occur. The most common reasons for failure are fracture of the femoral neck, loosening of the component, osteonecrosis of the femoral head, reaction to metal debris and malpositioning of the component. In 2008 the Australian National Joint Registry reported an inverse relationship between the size of the head component and the risk of revision in resurfacing hip arthroplasty. Hips with a femoral component size of ≤ 44 mm have a fivefold increased risk of revision than those with femoral components of ≥ 55 mm irrespective of gender. We have reviewed the literature to explore this observation and to identify possible reasons including the design of the implant, loading of the femoral neck, the orientation of the component, the production of
Particulate
Polyethylene
Wear of metal-on-metal bearings causes elevated levels of cobalt and chromium in blood and body fluids. Metal-on-metal bearings have two distinct wear phases. In the early phase, the wear rate is high. Later, it decreases and the bearing enters a steady-state phase. It is expected that as the wear rates decline, the level of cobalt detected in plasma will also decrease. We studied the baseline and exercise-related cobalt rise in 21 patients (13 men and eight women) with a mean age of 54 years (38 to 80) who had undergone successful hip resurfacing at a mean of 44 months (10 to 96) earlier. Our results showed that circulating baseline cobalt levels were not significantly correlated with the time since implantation (r = 0.08, p = 0.650). By contrast, the exercise-related cobalt rise was directly correlated with the inclination angle of the acetabular component (r = 0.47, p = 0.032) and inversely correlated with the time since implantation (r = −0.5, p = 0.020). Inclination of the acetabular component should be kept less than 40° to decrease the production of
Modern metal-on-metal bearings produce less
Objectives.
The practice of removing a well-fixed cementless
femoral component is associated with high morbidity. Ceramic bearing
couples are low wearing and their use minimises the risk of subsequent
further revision due to the production of
We report 17 patients (20 hips) in whom metal-on-metal resurfacing had been performed and who presented with various symptoms and a soft-tissue mass which we termed a pseudotumour. Each patient underwent plain radiography and in some, CT, MRI and ultrasonography were also performed. In addition, histological examination of available samples was undertaken. All the patients were women and their presentation was variable. The most common symptom was discomfort in the region of the hip. Other symptoms included spontaneous dislocation, nerve palsy, a noticeable mass or a rash. The common histological features were extensive necrosis and lymphocytic infiltration. To date, 13 of the 20 hips have required revision to a conventional hip replacement. Two are awaiting revision. We estimate that approximately 1% of patients who have a metal-on-metal resurfacing develop a pseudotumour within five years. The cause is unknown and is probably multifactorial. There may be a toxic reaction to an excess of particulate metal
Cementless acetabular fixation has demonstrated superior long-term durability in total hip replacement, but most series have studied implants with porous metal surfaces. We retrospectively evaluated the results of 100 consecutive patients undergoing total hip replacement where a non-porous Allofit component was used for primary press-fit fixation. This implant is titanium alloy, grit-blasted, with a macrostructure of forged teeth and has a biradial shape. A total of 81 patients (82 hips) were evaluated at final follow-up at a mean of 10.1 years (8.9 to 11.9). The Harris Hip Score improved from a mean 53 points (23 to 73) pre-operatively to a mean of 96 points (78 to 100) at final review. The osseointegration of all acetabular components was radiologically evaluated with no evidence of loosening. The survival rate with revision of the component as the endpoint was 97.5% (95% confidence interval 94 to 100) after 11.9 years. Radiolucency was found in one DeLee-Charnley zone in four acetabular components. None of the implants required revision for aseptic loosening. Two patients were treated for infection, one requiring a two-stage revision of the implant. One femoral stem was revised for osteolysis due to the production of metal
This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection. A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.Aims
Methods
Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects. We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.Aims
Methods
Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.Aims
Methods
A significant reduction in wear at five and ten years was previously reported when comparing Durasul highly cross-linked polyethylene with nitrogen-sterilized Sulene polyethylene in total hip arthroplasty (THA). We investigated whether the improvement observed at the earlier follow-up continued, resulting in decreased osteolysis and revision surgery rates over the second decade. Between January 1999 and December 2001, 90 patients underwent surgery using the same acetabular and femoral components with a 28 mm metallic femoral head and either a Durasul or Sulene liner. A total of 66 hips of this prospective randomized study were available for a minimum follow-up of 20 years. The linear femoral head penetration rate was measured at six weeks, one year, and annually thereafter, using the Dorr method on digitized radiographs with a software package.Aims
Methods
In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes. A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.Aims
Methods
The December 2023 Hip & Pelvis Roundup360 looks at: Early hip fracture surgery is safe for patients on direct oral anticoagulants; Time to return to work by occupational class after total hip or knee arthroplasty; Is there a consensus on air travel following hip and knee arthroplasty?; Predicting whether patients will achieve minimal clinically important differences following hip or knee arthroplasty; High-dose dual-antibiotic-loaded cement for hip hemiarthroplasty in the UK (WHiTE 8): a randomized controlled trial; Vitamin E – a positive thing in your poly?; Hydroxapatite-coated femoral stems: is there a difference in fixation?
We report the case of a 19-year-old man with inguinal lymphadenopathy caused by metallic debris from the loosening of a prosthesis inserted after tumour resection. Large amounts of
In metal-on-polyethylene (MoP) total hip arthroplasty (THA), large metal femoral heads have been used to increase stability and reduce the risk of dislocation. The increased size of the femoral head can, however, lead to increased taper corrosion, with the release of metal ions and adverse reactions. The aim of this study was to investigate the relationship between the size of the femoral head and the levels of metal ions in the blood in these patients. A total of 96 patients were enrolled at two centres and randomized to undergo MoP THA using either a 32 mm metal head or a femoral head of between 36 mm and 44 mm in size, being the largest possible to fit the thinnest available polyethylene insert. The levels of metal ions and patient-reported outcome measures (Oxford Hip Score, University of California, Los Angeles Activity Scale) were recorded at two and five years postoperatively.Aims
Methods
Seven psoas bursae filled with purulent fluid and inspissated debris were revealed at revision operations for failed resurfacing hip arthroplasties, an incidence of 5.8% in such revisions. Histological and microbiological investigations demonstrated that the psoas bursa collections resulted from the tissue response to polyethylene
Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage. After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.Aims
Methods
We describe a case of symptomatic focal femoral osteolysis around a screw hole distal to the hydroxyapatite-coated portion of a cannulated femoral component in a revision hip replacement. No locking screw had been inserted into this, the most proximal of the three distal holes for locking screws. The presence of polyethylene
In metal-on-metal (MoM) hip arthroplasties and resurfacings, mechanically induced corrosion can lead to elevated serum metal ions, a local inflammatory response, and formation of pseudotumours, ultimately requiring revision. The size and diametral clearance of anatomical (ADM) and modular (MDM) dual-mobility polyethylene bearings match those of Birmingham hip MoM components. If the acetabular component is satisfactorily positioned, well integrated into the bone, and has no surface damage, this presents the opportunity for revision with exchange of the metal head for ADM/MDM polyethylene bearings without removal of the acetabular component. Between 2012 and 2020, across two centres, 94 patients underwent revision of Birmingham MoM hip arthroplasties or resurfacings. Mean age was 65.5 years (33 to 87). In 53 patients (56.4%), the acetabular component was retained and dual-mobility bearings were used (DM); in 41 (43.6%) the acetabulum was revised (AR). Patients underwent follow-up of minimum two-years (mean 4.6 (2.1 to 8.5) years).Aims
Methods
Modular dual-mobility (DM) articulations are increasingly used during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS)-MRI abnormalities with serum metal ion levels in patients with DM articulations. A total of 45 patients (50 hips) with a modular DM articulation were included with mean follow-up of 3.7 years (SD 1.2). Enrolled patients with an asymptomatic, primary THA and DM articulation with over two years’ follow-up underwent MARS-MRI. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels.Aims
Methods
This paper presents a prospective trial carried out using the Monk "soft top" endoprosthesis in 33 patients. Two years after operation 70 per cent of the remaining patients had pain. A biomechanical and histopathological analysis of the endoprosthesis and the surrounding tissue, obtained from a further two patients at the time of revision, is presented. It is concluded that the prosthesis has inherent design faults which result in excessive wear of the polyethylene component. The
Osteolysis is due to particulate
The long-term biological effects of
The ABG I cementless hip prosthesis has demonstrated unacceptably high rates of wear and osteolysis in our patients. We performed a retrospective study of 97 hips implanted between 1992 and 1998. Radiographic analysis revealed high rates of wear of the polyethylene liner with marked periacetabular osteolysis. Clinical examination indicated that many of these patients were initially asymptomatic. Wear-related problems have required ten hips to be revised and a furher 13 are awaiting revision. This gives a failure rate of 24% at a mean follow-up of 69 months. Contributing factors are likely to include poor wear characteristics of the polyethylene liners which were gamma irradiated in air, and increased
We report a high rate of failure of the Ring polyethylene cementless cup caused largely by granulomatous osteolysis. We have reviewed 126 prostheses inserted from 1986 to 1992 at from 11 to 90 months after surgery. There was radiological evidence of osteolytic granulomas adjacent to the external surface of the cup in 32%, appearing on average at three years from operation. In a subgroup of 59 prostheses followed for at least four years the incidence of such changes was 54%. A total of 27 cups (22%) have required revision, 21 for granulomatous loosening at an average follow-up of five years. In the retrieved prostheses there was obvious polyethylene abrasion and histological examination confirmed the presence of polyethylene
In a post-mortem study, we compared subjects with metal implants with and without visible wear with an age-matched control group to determine the extent and effects of dissemination of
We studied the wear generated by motion between polished and shot-blasted titanium-alloy (Ti-6Al-4V) or cobalt-chrome alloy (Co-Cr) surfaces and cortical bone in vitro. Semicircular sections of human proximal femoral cortex were reamed to fit metal cylinders of each alloy. The cylinders were then fitted in the bone, loaded and rotated in physiological saline. Ti-alloy resulted in more wear both of the bone and of the metal than did Co-Cr alloy. Metal wear was reduced and bone wear was increased by shot-blasting, a procedure which introduces surface residual stresses and roughens the metal surface. We conclude that when there is gross motion between a metal implant and bone, Ti-alloy is likely to generate more