Aims. In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of
Aims. Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the
Varus and valgus joint laxity of the
Nuclear magnetic resonance imaging (MRI) was used to study the
Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with
Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.Aims
Methods
This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years. Following reconstruction there was a mean passive anterior laxity of 2.1 mm (
The posterior cruciate ligament (PCL) was imaged by MRI throughout flexion in neutral tibial rotation in six cadaver knees, which were also dissected, and in 20 unloaded and 13 loaded living (squatting) knees. The appearance of the ligament was the same in all three groups. In extension the ligament is curved concave-forwards. It is straight, fully out-to-length and approaching vertical from 60° to 120°, and curves convex-forwards over the roof of the intercondylar notch in full flexion. Throughout flexion the length of the ligament does not change, but the separations of its attachments do. We conclude that the PCL is not loaded in the unloaded cadaver knee and therefore, since its appearance in all three groups is the same, that it is also unloaded in the living knee during flexion. The posterior fibres may be an exception in hyperextension, probably being loaded either because of posterior femoral lift-off or because of the forward curvature of the PCL. These conclusions relate only to everyday life: none may be drawn with regard to more strenuous activities such as sport or in trauma.
Aims. An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis. Methods. A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral
Abnormal knee kinematics following reconstruction
of the anterior cruciate ligament may exist despite an apparent resolution
of tibial laxity and functional benefit. We performed upright, weight-bearing
MR scans of both knees in the sagittal plane at different angles
of flexion to determine the kinematics of the knee following unilateral reconstruction
(n = 12). The uninjured knee acted as a control. Scans were performed
pre-operatively and at three and six months post-operatively. Anteroposterior
tibial laxity was determined using an arthrometer and patient function
by validated questionnaires before and after reconstruction. In
all the knees with deficient anterior cruciate ligaments, the tibial
plateau was displaced anteriorly and internally rotated relative
to the femur when compared with the control contralateral knee,
particularly in extension and early flexion (mean lateral compartment displacement:
extension 7.9 mm ( Our results show that despite improvement in laxity and functional
benefit, abnormal knee kinematics remain at six months and actually
deteriorate from three to six months following reconstruction of
the anterior cruciate ligament.
The restoration of knee alignment is an important
goal during total knee arthroplasty (TKA). In the past surgeons aimed
to restore neutral limb alignment during surgery. However, previous
studies have demonstrated alignment to be dynamic, varying depending
on the position of the limb and the degree of weight-bearing, and
between patients. We used a validated computer navigation system
to measure the femorotibial mechanical angle (FTMA) in 264 knees in
77 male and 55 female healthy volunteers aged 18 to 35 years (mean
26.2). We found the mean supine alignment to be a varus angle of
1.2° (standard deviation ( Knee alignment is different in different individuals and is dynamic
in nature, changing with different postures. This may have implications
for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions
and which may not represent the situation observed during weight-bearing. Cite this article:
Aims. Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA). Methods. A comparative cross-sectional, radiological study was undertaken of 500
Aims. This study aimed to uncover the hub long non-coding RNAs (lncRNAs) differentially expressed in osteoarthritis (OA) cartilage using an integrated analysis of the competing endogenous RNA (ceRNA) network and co-expression network. Methods. Expression profiles data of ten OA and ten normal tissues of human knee cartilage were obtained from the Gene Expression Omnibus (GEO) database (GSE114007). The differentially expressed messenger RNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified using the edgeR package. We integrated human microRNA (miRNA)-lncRNA/mRNA interactions with DElncRNA/DEmRNA expression profiles to construct a ceRNA network. Likewise, lncRNA and mRNA expression profiles were used to build a co-expression network with the WGCNA package. Potential hub lncRNAs were identified based on an integrated analysis of the ceRNA network and co-expression network. StarBase and Multi Experiment Matrix databases were used to verify the lncRNAs. Results. We detected 1,212 DEmRNAs and 49 DElncRNAs in OA and
Aims. The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the
To assess the incidence of radiological lateral osteoarthritis (OA) at 15 years after medial unicompartmental knee arthroplasty (UKA) and assess the relationship of lateral OA with symptoms and patient characteristics. Cemented Phase 3 medial Oxford UKA implanted by two surgeons since 1998 for the recommended indications were prospectively followed. A 15-year cumulative revision rate for lateral OA of 5% for this series was previously reported. A total of 163 unrevised knees with 15-year (SD 1) anterior-posterior knee radiographs were studied. Lateral joint space width (JSWL) was measured and severity of lateral OA was classified as: nil/mild, moderate, and severe. Preoperative and 15-year Oxford Knee Scores (OKS) and American Knee Society Scores were determined. The effect of age, sex, BMI, and intraoperative findings was analyzed. Statistical analysis included one-way analysis of variance and Kruskal-Wallis H test, with significance set at 5%.Aims
Methods
This study compared patient-reported outcomes of three total knee arthroplasty (TKA) designs from one manufacturer: one cruciate-retaining (CR) design, and two cruciate-sacrificing designs, anterior-stabilized (AS) and posterior-stabilized (PS). Patients scheduled for primary TKA were included in a single-centre, prospective, three-armed, blinded randomized trial (n = 216; 72 per group). After intraoperative confirmation of posterior cruciate ligament (PCL) integrity, patients were randomly allocated to receive a CR, AS, or PS design from the same TKA system. Insertion of an AS or PS design required PCL resection. The primary outcome was the mean score of all five subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS) at two-year follow-up. Secondary outcomes included all KOOS subscales, Oxford Knee Score, EuroQol five-dimension health questionnaire, EuroQol visual analogue scale, range of motion (ROM), and willingness to undergo the operation again. Patient satisfaction was also assessed.Aims
Methods
The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the
The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article:
Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications. In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α.Aims
Methods
With up to 40% of patients having patellofemoral joint osteoarthritis (PFJ OA), the two arthroplasty options are to replace solely the patellofemoral joint via patellofemoral arthroplasty (PFA), or the entire knee via total knee arthroplasty (TKA). The aim of this study was to assess postoperative success of second-generation PFAs compared to TKAs for patients treated for PFJ OA using patient-reported outcome measures (PROMs) and domains deemed important by patients following a patient and public involvement meeting. MEDLINE, EMBASE via OVID, CINAHL, and EBSCO were searched from inception to January 2022. Any study addressing surgical treatment of primary patellofemoral joint OA using second generation PFA and TKA in patients aged above 18 years with follow-up data of 30 days were included. Studies relating to OA secondary to trauma were excluded. ROB-2 and ROBINS-I bias tools were used.Aims
Methods
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA. Cite this article:
The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.Aims
Methods
The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.Aims
Methods
Objective patellar instability has been correlated with dysplasia of the femoral trochlea. This in vitro study tested the hypothesis that trochleoplasty would increase patellar stability and normalise the kinematics of a knee with a dysplastic trochlea. Six fresh-frozen knees were loaded via the heads of the quadriceps. The patella was displaced 10 mm laterally and the displacing force was measured from 0° to 90° of flexion. Patellar tracking was measured from 0° to 130° of knee flexion using magnetic sensors. These tests were repeated after raising the central anterior trochlea to simulate dysplasia, and repeated again after performing a trochleoplasty on each specimen. The simulated dysplasia significantly reduced stability from that of the
The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.Aims
Methods
Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics in vivo. The kinematic profile was obtained by measuring the patellar tendon angle through the functional knee flexion range (0° to 90°) and the results compared with 14
Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of Aims
Methods
Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.Aims
Methods
Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot.Aims
Methods
A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.Aims
Methods
We studied the kinetics of the knee in 20 patients (22 knees) 12 months after total knee arthroplasty (TKA), by using three-dimensional radiostereometry and film-exchanger techniques. Eleven knees had a concave (constrained) tibial implant and 11 a posterior-stabilised prosthesis. Eleven
Axial radiographs were obtained under valgus and external rotation stress at 45° of knee flexion with and without contraction of the quadriceps muscle in order to assess the dynamics of patellar subluxation or dislocation. The radiography was performed on 82 knees in 61 patients with patellofemoral instability, and on 44
The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.Aims
Methods
Objectives. Throughout the 20th Century, it has been postulated that the knee moves on the basis of a four-bar link mechanism composed of the cruciate ligaments, the femur and the tibia. As a consequence, the femur has been thought to roll back with flexion, and total knee arthroplasty (TKA) prostheses have been designed on this basis. Recent work, however, has proposed that at a position of between 0° and 120° the medial femoral condyle does not move anteroposteriorly whereas the lateral femoral condyle tends, but is not obliged, to roll back – a combination of movements which equates to tibial internal/ femoral external rotation with flexion. The aim of this paper was to assess if the articular geometry of the GMK Sphere TKA could recreate the natural knee movements in situ/in vivo. Methods. The pattern of knee movement was studied in 15 patients (six male: nine female; one male with bilateral TKAs) with 16 GMK Sphere implants, at a mean age of 66 years (53 to 76) with a mean BMI of 30 kg/m. 2. (20 to 35). The motions of all 16 knees were observed using pulsed fluoroscopy during a number of weight-bearing and non-weight-bearing static and dynamic activities. Results. During maximally flexed kneeling and lunging activities, the mean tibial internal rotation was 8° (standard deviation (. sd. ) 6). At a mean 112° flexion (. sd. 16) during lunging, the medial and lateral condyles were a mean of 2 mm (. sd. 3) and 8 mm (. sd. 4) posterior to a transverse line passing through the centre of the medial tibial concavity. With a mean flexion of 117° (. sd. 14) during kneeling, the medial and lateral condyles were a mean of 1 mm (. sd. 4) anterior and 6 mm (. sd. 4) posterior to the same line. During dynamic stair and pivoting activities, there was a mean anteroposterior translation of 0 mm to 2 mm of the medial femoral condyle. Backward lateral condylar translation occurred and was linearly related to tibial rotation. Conclusion. The GMK Sphere TKA in our study group shows movements similar in pattern, although reduced in magnitude, to those in recent reports relating to
It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.Aims
Methods
We used fluoroscopy to study the kinematics of the knee in 47 patients with total knee arthroplasty (TKA) and four control subjects with
We have investigated the changes in anterior laxity of the knee in response to direct electrical stimulation of eight normal and 45 reconstructed anterior cruciate ligaments (ACLs). In the latter, the mean time from reconstruction was 26.7 months (24 to 32). The ACL was stimulated electrically using a bipolar electrode probe during arthroscopy. Anterior laxity was examined with the knee flexed at 20° under a force of 134 N applied anteriorly to the tibia using the KT-2000 knee arthrometer before, during and after electrical stimulation. Anterior tibial translation in eight normal and 17 ACL-reconstructed knees was significantly decreased during stimulation, compared with that before stimulation. In 28 knees with reconstruction of the ACL, in 22 of which the grafts were found to have detectable somatosensory evoked potentials during stimulation, anterior tibial translation was not decreased. These findings suggest that the ACL-hamstring reflex arc in
Aims. The purpose of this study was to report the experience of dynamic
intraligamentary stabilisation (DIS) using the Ligamys device for
the treatment of acute ruptures of the anterior cruciate ligament
(ACL). Patients and Methods. Between March 2011 and April 2012, 50 patients (34 men and 16
women) with an acute rupture of the ACL underwent primary repair
using this device. The mean age of the patients was 30 years (18
to 50). Patients were evaluated for laxity, stability, range of
movement (ROM), Tegner, Lysholm, International Knee Documentation Committee
(IKDC) and visual analogue scale (VAS) scores over a follow-up period
of two years. Results. At final follow-up, anteroposterior translation differed from
the
The shape of the flexion gap in 20
Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters. An upright, open MRI was used to directly measure tibiofemoral contact area, centroid location, and alignment in 18 individuals with unilateral ACL rupture within the last five years. Eight participants had been treated nonoperatively and ten had ACL reconstruction performed within one year of injury. All participants were high-functioning and had returned to sport or recreational activities. Healthy contralateral knees served as controls. Participants were imaged in a standing posture with knees fully extended.Aims
Methods
The patient-acceptable symptom state (PASS) is a level of wellbeing, which is measured by the patient. The aim of this study was to determine if the proportion of patients who achieved an acceptable level of function (PASS) after medial unicompartmental knee arthroplasty (UKA) was different based on the status of the anterior cruciate ligament (ACL) at the time of surgery. A total of 114 patients who underwent UKA for isolated medial osteoarthritis (OA) of the knee were included in the study. Their mean age was 65 years (SD 10). No patient underwent a bilateral procedure. Those who had undergone ACL reconstruction during the previous five years were excluded. The Knee injury Osteoarthritis Outcome Score Activities of Daily Living (KOOS ADL) function score was used as the primary outcome measure with a PASS of 87.5, as described for total knee arthroplasty (TKA). Patients completed all other KOOS subscales, Lysholm score, the Western Ontario and McMaster Universities Osteoarthritis Index, and the Veterans Rand 12-item health survey score. Failure was defined as conversion to TKA.Aims
Methods
In the last decade, interest in partial knee arthroplasties and bicruciate retaining total knee arthroplasties has increased. In addition, patient-related outcomes and functional results such as range of movement and ambulation may be more promising with less invasive procedures such as bicompartmental arthroplasty (BCA). The purpose of this study is to evaluate clinical and radiological outcomes after a third-generation patellofemoral arthroplasty (PFA) combined with a medial or lateral unicompartmental knee arthroplasty (UKA) at mid- to long-term follow-up. A total of 57 procedures were performed. In 45 cases, a PFA was associated with a medial UKA and, in 12, with a lateral UKA. Patients were followed with validated patient-reported outcome measures (Oxford Knee Score (OKS), EuroQol five-dimension questionnaire (EQ-5D), EuroQoL Visual Analogue Scale (EQ-VAS)), the Knee Society Score (KSS), the Forgotten Joint Score (FJS), and radiological analysis.Aims
Methods
The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact
We report a retrospective analysis of the results of combined arthroscopically-assisted posterior cruciate ligament reconstruction and open reconstruction of the posterolateral corner in 19 patients with chronic (three or more months) symptomatic instability and pain in the knee. All the operations were performed between 1996 and 2003 and all the patients were assessed pre- and post-operatively by physical examination and by applying three different ligament rating scores. All also had weight-bearing radiographs, MR scans and an examination under anaesthesia and arthroscopy pre-operatively. The posterior cruciate ligament reconstruction was performed using an arthroscopically-assisted single anterolateral bundle technique and the posterolateral corner structures were reconstructed using an open Larson type of tenodesis. The mean follow up was 66.8 months (24 to 110). Pre-operatively, all the patients had a grade III posterior sag according to Clancy and demonstrated more than 20° of external rotation compared with the opposite
A total of 218 patients with unilateral anterior cruciate ligament deficiency were randomly assigned to one of four groups. In group A an anatomical double bundle anterior cruciate ligament reconstruction was performed; group B were treated by a single bundle using an Endobutton for femoral fixation; in group C by a single bundle using RigidFix cross pins for femoral fixation; and in group D by a single bundle using a bioabsorbable TransFix II screw for femoral fixation. For tibial fixation a bioabsorbable Intrafix interference screw was used for all the groups and the graft was fashioned from the semitendinosus and gracilis tendons in all patients. In all, 18 patients were lost to follow-up. The remaining 200 were subjected to a clinical evaluation, with assessment of the anterior drawer, Lachman’s and the pivot-shift tests, and KT-1000 arthrometer measurement. They also completed the International Knee Documentation Committee, Lysholm knee and Tegner activity scores. At a mean of 29 months (25 to 38) follow-up there were no significant differences concerning time between injury and range of movement and Lysholm knee scores among the four groups. However, the double bundle method showed significantly better results for the pivot-shift test (p = 0.002). The KT 1000 measurements showed a mean difference between the reconstructed knee and the patients’
A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type.Aims
Methods
This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert.Aims
Methods
Progressive degenerative changes in the medial
compartment of the knee following lateral unicompartmental arthroplasty
(UKA) remains a leading indication for revision surgery. The purpose
of this study is to evaluate changes in the congruence and joint
space width (JSW) of the medial compartment following lateral UKA.
The congruence of the medial compartment of 53 knees (24 men, 23
women, mean age 13.1 years; . sd. 62.1) following lateral
UKA was evaluated pre-operatively and six weeks post-operatively,
and compared with 41
We used single-photon emission computed tomography (SPECT) to determine the long-term risk of degenerative change after reconstruction of the anterior cruciate ligament (ACL). Our study population was a prospective series of 31 patients with a mean age at injury of 27.8 years (18 to 47) and a mean follow-up of ten years (9 to 13) after bone-patellar tendon-bone reconstruction of the ACL. The contralateral