Advertisement for orthosearch.org.uk
Results 1 - 50 of 130
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1195 - 1201
1 Nov 2001
McGrath LR Shardlow DL Ingham E Andrews M Ivory J Stone MH Fisher J

We have examined 26 retrieved, failed titanium-alloy femoral stems. The clinical details, radiological appearances and the histology of the surrounding soft tissues in each patient were also investigated.

The stems were predominantly of the flanged design and had a characteristic pattern of wear. A review of the radiographs showed a series of changes, progressive with time. The first was lateral debonding with subsidence of the stem. This was followed by calcar resorption and fragmentation or fracture of the cement. Finally, osteolysis was seen, starting with a radiolucency at the cement-bone interface and progressing to endosteal cavitation.

Three histological appearances were noted: granulomatous, necrobiotic and necrotic. We suggest that an unknown factor, possibly related to the design of the stem, caused it to move early. After this, micromovement at the cement-stem interface led to the generation of particulate debris and fracture of the cement. A soft-tissue reaction to the debris resulted in osteolysis and failure of fixation of the prostheses.


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 1 | Pages 20 - 24
1 Jan 1991
Cook S Thomas K

The causes of mechanical failure of five noncemented porous-coated components were studied. There were two cobalt-chromium alloy and three titanium alloy implants which fractured after 12 to 48 months. The implants included one acetabular component, and one femoral condylar, one patellar and two tibial components. Examination of the fractured surfaces revealed fatigue to be the mechanism of failure in all cases. The porous coating and the processes required for its fabrication had resulted in weakening and reduction of substrate thickness. Additional factors were stress concentration due to limited, localised bone ingrowth, and some features of the design of the implants.


The early failure and revision of bimodular primary total hip arthroplasty prostheses requires the identification of the risk factors for material loss and wear at the taper junctions through taper wear analysis. Deviations in taper geometries between revised and pristine modular neck tapers were determined using high resolution tactile measurements. A new algorithm was developed and validated to allow the quantitative analysis of material loss, complementing the standard visual inspection currently used.

The algorithm was applied to a sample of 27 retrievals (in situ from 2.9 to 38.1 months) of the withdrawn Rejuvenate modular prosthesis. The mean wear volumes on the flat distal neck piece taper was 3.35 mm3 (0.55 to 7.57), mainly occurring in a characteristic pattern in areas with high mechanical loading. Wear volume tended to increase with time to revision (r² = 0.423, p = 0.001). Implant and patient specific data (offset, stem size, patient’s mass, age and body mass index) did not correlate with the amount of material loss observed (p >  0.078). Bilaterally revised implants showed higher amounts of combined total material loss and similar wear patterns on both sides. The consistent wear pattern found in this study has not been reported previously, suggesting that the device design and materials are associated with the failure of this prosthesis.

Cite this article: Bone Joint J 2015;97-B:1350–7.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 793 - 798
1 Jun 2017
Anderson FL Koch CN Elpers ME Wright TM Haas SB Heyse TJ

Aims

We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty.

Materials and Methods

A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 38 - 43
1 Mar 2024
Buckner BC Urban ND Cahoy KM Lyden ER Deans CF Garvin KL

Aims. Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. Methods. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up. Results. Average HHS improved from 50.8 to 91.9 and 51.0 to 89.8 in the OxZi group and control group, respectively (p = 0.644), with no osteolysis in either group. Linear and volumetric wear rates in the OxZi group averaged 0.03 mm/year and 3.46 mm. 3. /year, respectively. There was no statistically significant difference in HHS scores, nor in linear or volumetric wear rate between the groups, and no revision for any indication. Conclusion. The radiological and clinical outcomes, and survivorship of THA with OxZi femoral heads and HXLPE liners, were excellent, and comparable to CoCr or ceramic heads at minimum ten-year follow-up. Wear rates are below what would be expected for development of osteolysis. OxZi-HXLPE is a durable bearing couple with excellent long-term outcomes. Cite this article: Bone Joint J 2024;106-B(3 Supple A):38–43


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced TKA design. Cite this article: A. Cerquiglini, J. Henckel, H. Hothi, P. Allen, J. Lewis, A. Eskelinen, J. Skinner, M. T. Hirschmann, A. J. Hart. Analysis of the Attune tibial tray backside: A comparative retrieval study. Bone Joint Res 2019;8:136–145. DOI: 10.1302/2046-3758.83.BJJ-2018-0102.R2


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1248 - 1255
1 Oct 2019
Pineda A Pabbruwe MB Kop AM Vlaskovsky P Hurworth M

Aims. The aim of this study was to conduct the largest low contact stress (LCS) retrieval study to elucidate the failure mechanisms of the Porocoat and Duofix femoral component. The latter design was voluntarily recalled by the manufacturer. Materials and Methods. Uncemented LCS explants were divided into three groups: Duofix, Porocoat, and mixed. Demographics, polyethylene wear, tissue ingrowth, and metallurgical analyses were performed. Results. In 104 implants, a decrease in the odds of loosening and an increase in metallosis and tissue staining in the Duofix group relative to Porocoat group was detected (p = 0.028). There was an increased presence of embedded metallic debris in the Duofix group (p < 0.001). Decreased tissue ingrowth was associated with the Duofix surface (p < 0.001). The attached beads had reduced microhardness, indicative of adverse thermal processing, which resulted in bead shedding, particulate debris, and metallosis. Conclusion. Hydroxyapatite coating of the LCS femoral component produced unexpected results and led to its recall. The root cause was likely a combination of retained alumina grit and a reduction in bead microhardness (mechanical strength) resulting in increased particle debris, metallosis, and early revision. The Duofix LCS femoral component was not equivalent to the Porocoat version despite its approval through the Food and Drug Administration (FDA) 510(k) equivalance approval process. Regulation of the introduction of modified existing devices needs to be improved and the Duofix LCS should have been considered to be a new device for which equivalence had not been demonstrated at the point of introduction. Cite this article: Bone Joint J 2019;101-B:1248–1255


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives. The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. Methods. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables. Results. We measured median taper material loss rates of 0.210 mm. 3. /year (0.030 to 0.448) for the metal head group and 0.084 mm. 3. /year (0.059 to 0.108) for the ceramic group. The difference was not significant (p = 0.58). Moreover, no significant correlation between material loss and implant or patient factors (p > 0.05) was found. Conclusions. Metal heads did not increase taper damage on CoCr trunnions compared with ceramic heads from the same hip design. The amount of material released at the taper junctions was very low when compared with available data regarding CoCr/Ti coupling in metal-on-metal bearings. Cite this article: A. Di Laura, H. Hothi, J. Henckel, I. Swiatkowska, M. H. L. Liow, Y-M. Kwon, J. A. Skinner, A. J. Hart. Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 2017;6:–350. DOI: 10.1302/2046-3758.65.BJR-2016-0325.R1


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 31 - 37
1 Mar 2024
Bunyoz KI Tsikandylakis G Mortensen K Gromov K Mohaddes M Malchau H Troelsen A

Aims

In metal-on-polyethylene (MoP) total hip arthroplasty (THA), large metal femoral heads have been used to increase stability and reduce the risk of dislocation. The increased size of the femoral head can, however, lead to increased taper corrosion, with the release of metal ions and adverse reactions. The aim of this study was to investigate the relationship between the size of the femoral head and the levels of metal ions in the blood in these patients.

Methods

A total of 96 patients were enrolled at two centres and randomized to undergo MoP THA using either a 32 mm metal head or a femoral head of between 36 mm and 44 mm in size, being the largest possible to fit the thinnest available polyethylene insert. The levels of metal ions and patient-reported outcome measures (Oxford Hip Score, University of California, Los Angeles Activity Scale) were recorded at two and five years postoperatively.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims

Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear.

Methods

A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 476 - 484
1 Jul 2018
Panagiotopoulou VC Davda K Hothi HS Henckel J Cerquiglini A Goodier WD Skinner J Hart A Calder PR

Objectives. The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods. A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results. Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion. This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A retrieval analysis of the Precice intramedullary limb lengthening system. Bone Joint Res 2018;7:476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 879 - 883
1 Sep 2024
Kayani B Staats K Haddad FS


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 367 - 373
1 Mar 2010
Kendrick BJL Longino D Pandit H Svard U Gill HS Dodd CAF Murray DW Price AJ

The Oxford Unicompartmental Knee replacement (UKR) was introduced as a design to reduce polyethylene wear. There has been one previous retrieval study involving this implant, which reported very low rates of wear in some specimens but abnormal patterns of wear in others. There has been no further investigation of these abnormal patterns. The bearings were retrieved from 47 patients who had received a medial Oxford UKR for anteromedial osteoarthritis of the knee. None had been studied previously. The mean time to revision was 8.4 years (. sd. 4.1), with 20 having been implanted for over ten years. The macroscopic pattern of polyethylene wear and the linear penetration were recorded for each bearing. The mean rate of linear penetration was 0.07 mm/year. The patterns of wear fell into three categories, each with a different rate of linear penetration; 1) no abnormal macroscopic wear and a normal articular surface, n = 16 (linear penetration rate = 0.01 mm/year); 2) abnormal macroscopic wear and normal articular surfaces with extra-articular impingement, n = 16 (linear penetration rate = 0.05 mm/year); 3) abnormal macroscopic wear and abnormal articular surfaces with intra-articular impingement +/− signs of non-congruous articulation, n = 15 (linear penetration rate = 0.12 mm/year). The differences in linear penetration rate were statistically significant (p < 0.001). These results show that very low rates of polyethylene wear are possible if the device functions normally. However, if the bearing displays suboptimal function (extra-articular, intra-articular impingement or incongruous articulation) the rates of wear increase significantly


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims

The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice.

Methods

A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1168 - 1176
1 Nov 2023
Yüksel Y Koster LA Kaptein BL Nelissen RGHH den Hollander P

Aims

Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes.

Methods

A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1306 - 1311
1 Sep 2010
Patten EW Atwood SA Van Citters DW Jewett BA Pruitt LA Ries MD

Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 μm to 4.3 μm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage. This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 852 - 858
1 Jul 2022
Grothe T Günther K Hartmann A Blum S Haselhoff R Goronzy J

Aims

Head-taper corrosion is a cause of failure in total hip arthroplasty (THA). Recent reports have described an increasing number of V40 taper failures with adverse local tissue reaction (ALTR). However, the real incidence of V40 taper damage and its cause remain unknown. The aim of this study was to evaluate the long-term incidence of ALTR in a consecutive series of THAs using a V40 taper and identify potentially related factors.

Methods

Between January 2006 and June 2007, a total of 121 patients underwent THA using either an uncemented (Accolade I, made of Ti12Mo6Zr2Fe; Stryker, USA) or a cemented (ABG II, made of cobalt-chrome-molybdenum (CoCrMo); Stryker) femoral component, both with a V40 taper (Stryker). Uncemented acetabular components (Trident; Stryker) with crosslinked polyethylene liners and CoCr femoral heads of 36 mm diameter were used in all patients. At a mean folllow-up of 10.8 years (SD 1.1), 94 patients (79%) were eligible for follow-up (six patients had already undergone a revision, 15 had died, and six were lost to follow-up). A total of 85 THAs in 80 patients (mean age 61 years (24 to 75); 47 (56%) were female) underwent clinical and radiological evaluation, including the measurement of whole blood levels of cobalt and chrome. Metal artifact reduction sequence MRI scans of the hip were performed in 71 patients.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 833 - 843
1 Jul 2022
Kayani B Baawa-Ameyaw J Fontalis A Tahmassebi J Wardle N Middleton R Stephen A Hutchinson J Haddad FS

Aims

This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA).

Methods

Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 598 - 603
1 May 2022
Siljander MP Gausden EB Wooster BM Karczewski D Sierra RJ Trousdale RT Abdel MP

Aims

The aim of this study was to evaluate the incidence of liner malseating in two commonly used dual-mobility (DM) designs. Secondary aims included determining the risk of dislocation, survival, and clinical outcomes.

Methods

We retrospectively identified 256 primary total hip arthroplasties (THAs) that included a DM component (144 Stryker MDM and 112 Zimmer-Biomet G7) in 233 patients, performed between January 2012 and December 2019. Postoperative radiographs were reviewed independently for malseating of the liner by five reviewers. The mean age of the patients at the time of THA was 66 years (18 to 93), 166 (65%) were female, and the mean BMI was 30 kg/m2 (17 to 57). The mean follow-up was 3.5 years (2.0 to 9.2).


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1731 - 1735
1 Nov 2021
Iobst CA Frost MW Rölfing JD Rahbek O Bafor A Duncan M Kold S

Aims

Limb-lengthening nails have largely replaced external fixation in limb-lengthening and reconstructive surgery. However, the adverse events and high prevalence of radiological changes recently noted with the STRYDE lengthening nail have raised concerns about the use of internal lengthening nails. The aim of this study was to compare the prevalence of radiological bone abnormalities between STRYDE, PRECICE, and FITBONE nails prior to nail removal.

Methods

This was a retrospective case series from three centres. Patients were included if they had either of the three limb-lengthening nails (STYDE, PRECICE, or FITBONE) removed. Standard orthogonal radiographs immediately prior to nail removal were examined for bone abnormalities at the junction of the telescoping nail parts.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 388 - 400
8 Jul 2021
Dall’Ava L Hothi H Henckel J Di Laura A Tirabosco R Eskelinen A Skinner J Hart A

Aims

The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants.

Methods

We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims

To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening.

Methods

The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims

Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning.

Methods

3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 200 - 205
1 Feb 2022
Orita K Goto K Kuroda Y Kawai T Okuzu Y Matsuda S

Aims

The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA).

Methods

We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 376 - 385
1 Mar 2022
Gramlich Y Hofmann L Kress S Ruckes C Kemmerer M Klug A Hoffmann R Kremer M

Aims

This study compared the cobalt and chromium serum ion concentration of patients treated with two different metal-on-metal (MoM) hinged total knee arthroplasty (TKA) systems, as well as a titanium nitride (TiN)-coated variant.

Methods

A total of 63 patients (65 implants) were treated using either a MoM-coated (n = 29) or TiN-coated (n = 7) hinged TKA (GenuX mobile bearing, MUTARS; Implantcast, Germany) versus the BPKS (Brehm, Germany) hinged TKA (n = 27), in which the weight placed on the MoM hinge is diffused through a polyethylene (PE) inlay, reducing the direct load on the MoM hinge. Serum cobalt and chromium ion concentrations were assessed after minimum follow-up of 12 months, as well as functional outcome and quality of life.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1479 - 1487
1 Sep 2021
Davis ET Pagkalos J Kopjar B

Aims

The aim of our study was to investigate the effect of asymmetric crosslinked polyethylene liner use on the risk of revision of cementless and hybrid total hip arthroplasties (THAs).

Methods

We undertook a registry study combining the National Joint Registry dataset with polyethylene manufacturing characteristics as supplied by the manufacturers. The primary endpoint was revision for any reason. We performed further analyses on other reasons including instability, aseptic loosening, wear, and liner dissociation. The primary analytic approach was Cox proportional hazard regression.


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 309 - 310
1 Mar 2022
Haddad FS


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims

The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs).

Methods

At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1774 - 1782
1 Dec 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims

The aim of this study was to determine if uncemented acetabular polyethylene (PE) liner geometry, and lip size, influenced the risk of revision for instability or loosening.

Methods

A total of 202,511 primary total hip arthroplasties (THAs) with uncemented acetabular components were identified from the National Joint Registry (NJR) dataset between 2003 and 2017. The effect of liner geometry on the risk of revision for instability or loosening was investigated using competing risk regression analyses adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, surgeon grade, surgical approach, head size, and polyethylene crosslinking. Stratified analyses by surgical approach were performed, including pairwise comparisons of liner geometries.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1168 - 1172
1 Jun 2021
Iliadis AD Wright J Stoddart MT Goodier WD Calder P

Aims

The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device.

Methods

This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 15 - 18
1 Oct 2021


Bone & Joint Open
Vol. 2, Issue 8 | Pages 599 - 610
1 Aug 2021
Hothi H Bergiers S Henckel J Iliadis AD Goodier WD Wright J Skinner J Calder P Hart AJ

Aims

The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices.

Methods

We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions.


Bone & Joint 360
Vol. 10, Issue 1 | Pages 4 - 9
1 Feb 2021
White JJE Manktelow ARJ


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 66 - 72
1 Jul 2021
Hernandez NM Hinton ZW Wu CJ Lachiewicz PF Ryan SP Wellman SS

Aims

Modular dual mobility (MDM) acetabular components are often used with the aim of reducing the risk of dislocation in revision total hip arthroplasty (THA). There is, however, little information in the literature about its use in this context. The aim of this study, therefore, was to evaluate the outcomes in a cohort of patients in whom MDM components were used at revision THA, with a mean follow-up of more than five years.

Methods

Using the database of a single academic centre, 126 revision THAs in 117 patients using a single design of an MDM acetabular component were retrospectively reviewed. A total of 94 revision THAs in 88 patients with a mean follow-up of 5.5 years were included in the study. Survivorship was analyzed with the endpoints of dislocation, reoperation for dislocation, acetabular revision for aseptic loosening, and acetabular revision for any reason. The secondary endpoints were surgical complications and the radiological outcome.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims

The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated.

Methods

Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 371 - 379
15 Jun 2021
Davies B Kaila R Andritsos L Gray Stephens C Blunn GW Gerrand C Gikas P Johnston A

Aims

Hydroxyapatite (HA)-coated collars have been shown to reduce aseptic loosening of massive endoprostheses following primary surgery. Limited information exists about their effectiveness in revision surgery. The aim of this study was to radiologically assess osteointegration to HA-coated collars of cemented massive endoprostheses following revision surgery.

Methods

Retrospective review of osseointegration frequency, pattern, and timing to a specific HA-coated collar on massive endoprostheses used in revision surgery at our tertiary referral centre between 2010 to 2017 was undertaken. Osseointegration was radiologically classified on cases with a minimum follow-up of six months.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 983 - 989
1 Nov 1998
Murray DW Goodfellow JW O’Connor JJ

Retrieval studies have shown that the use of fully congruent meniscal bearings reduces wear in knee replacements. We report the outcome of 143 knees with anteromedial osteoarthritis and normal anterior cruciate ligaments treated by unicompartmental arthroplasty using fully congruous mobile polyethylene bearings. At review, 34 knees were in patients who had died and 109 were in those who were still living. The mean elapsed time since operation was 7.6 years (maximum 13.8). We established the status of all but one knee. There had been five revision operations giving a cumulative prosthetic survival rate at ten years (33 knees at risk) of 98% (95% CI 93% to 100%). Considering the knee lost to follow-up as a failure, the ‘worst-case’ survival rate was 97%. No failures were due to polyethylene wear or aseptic loosening of the tibial component. One bearing which dislocated at four years was reduced by closed manipulation. The ten-year survival rate is the best of those reported for unicompartmental arthroplasty and not significantly different from the best rates for total knee replacement


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 94 - 101
1 Jun 2021
Roy ME Whiteside LA Ly KK Gauvain MJ

Aims

The aims of this study were to evaluate wear on the surface of cobalt-chromium (CoCr) femoral components used in total knee arthroplasty (TKA) and compare the wear of these components with that of ceramic femoral components.

Methods

Optical profilometry was used to evaluate surface roughness and to examine the features created by the wear process in a knee wear simulator. We developed a method of measuring surface changes on five CoCr femoral components and quantifying the loss of material from the articular surface during the wear process. We also examined the articular surface of three ceramic femoral components from a previous test for evidence of surface damage, and compared it with that of CoCr components.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 423 - 429
1 Mar 2021
Diez-Escudero A Hailer NP

Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth.

Cite this article: Bone Joint J 2021;103-B(3):423–429.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 129 - 137
1 Jun 2020
Knowlton CB Lundberg HJ Wimmer MA Jacobs JJ

Aims

A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients.

Methods

In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 443 - 456
28 Jun 2021
Thompson JW Corbett J Bye D Jones A Tissingh EK Nolan J

Aims

The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems.

Methods

A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003 and June 2020.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 33 - 40
1 Jul 2020
Gustafson JA Pourzal R Levine BR Jacobs JJ Lundberg HJ

Aims

The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions.

Methods

Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1682 - 1688
1 Dec 2020
Corona PS Vicente M Carrera L Rodríguez-Pardo D Corró S

Aims

The success rates of two-stage revision arthroplasty for infection have evolved since their early description. The implementation of internationally accepted outcome criteria led to the readjustment of such rates. However, patients who do not undergo reimplantation are usually set aside from these calculations. The aim of this study was to investigate the outcomes of two-stage revision arthroplasty when considering those who do not undergo reimplantation, and to investigate the characteristics of this subgroup.

Methods

A retrospective cohort study was conducted. Patients with chronic hip or knee periprosthetic joint infection (PJI) treated with two-stage revision between January 2010 and October 2018, with a minimum follow-up of one year, were included. Variables including demography, morbidity, microbiology, and outcome were collected. The primary endpoint was the eradication of infection. Patients who did not undergo reimplantation were analyzed in order to characterize this subgroup better.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 515 - 523
1 Aug 2020
Bergiers S Hothi H Henckel J Eskelinen A Skinner J Hart A

Aims

The optimum clearance between the bearing surfaces of hip arthroplasties is unknown. Theoretically, to minimize wear, it is understood that clearances must be low enough to maintain optimal contact pressure and fluid film lubrication, while being large enough to allow lubricant recovery and reduce contact patch size. This study aimed to identify the relationship between diametrical clearance and volumetric wear, through the analysis of retrieved components.

Methods

A total of 81 metal-on-metal Pinnacle hips paired with 12/14 stems were included in this study. Geometrical analysis was performed on each component, using coordinate and roundness measuring machines. The relationship between their as-manufactured diametrical clearance and volumetric wear was investigated. The Mann-Whitney U test and unpaired t-test were used, in addition to calculating the non-parametric Spearman's correlation coefficient, to statistically evaluate the acquired data.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims

This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys.

Methods

Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 90 - 101
1 Jan 2020
Davis ET Pagkalos J Kopjar B

Aims

The aim of this study was to identify the effect of the manufacturing characteristics of polyethylene acetabular liners on the survival of cementless and hybrid total hip arthroplasty (THA).

Methods

Prospective cohort study using linked National Joint Registry (NJR) and manufacturer data. The primary endpoint was revision for aseptic loosening. Cox proportional hazard regression was the primary analytical approach. Manufacturing variables included resin type, crosslinking radiation dose, terminal sterilization method, terminal sterilization radiation dose, stabilization treatment, total radiation dose, packaging, and face asymmetry. Total radiation dose was further divided into G1 (no radiation), G2 (> 0 Mrad to < 5 Mrad), G3 (≥ 5 Mrad to < 10 Mrad), and G4 (≥ 10 Mrad).


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1348 - 1355
1 Nov 2019
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T

Aims

A retrospective study was conducted to measure short-term in vivo linear and volumetric wear of polyethylene (PE) inserts in 101 total knee arthroplasty (TKA) patients using model-based radiostereometric analysis (MBRSA).

Patients and Methods

Nonweightbearing supine RSA exams were performed postoperatively and at six, 12, and 24 months. Weightbearing standing RSA exams were performed on select patients at 12 and 24 months. Wear was measured both linearly (joint space) and volumetrically (digital model overlap) at each available follow-up. Precision of both methods was assessed by comparing double RSA exams. Patient age, sex, body mass index, and Oxford Knee Scores were analyzed for any association with PE wear.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1330 - 1335
1 Oct 2018
Ponzio DY Weitzler L deMeireles A Esposito CI Wright TM Padgett DE

Aims

The aim of this study was to evaluate the surface damage, the density of crosslinking, and oxidation in retrieved antioxidant-stabilized highly crosslinked polyethylene (A-XLPE) tibial inserts from total knee arthroplasty (TKA), and to compare the results with a matched cohort of standard remelted highly crosslinked polyethylene (XLPE) inserts.

Materials and Methods

A total of 19 A-XLPE tibial inserts were retrieved during revision TKA and matched to 18 retrieved XLPE inserts according to the demographics of the patients, with a mean length of implantation of 15 months (1 to 42). The percentage areas of PE damage on the articular surfaces and the modes of damage were measured. The density of crosslinking of the PE and oxidation were measured at loaded and unloaded regions on these surfaces.