Advertisement for orthosearch.org.uk
Results 1 - 20 of 109
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 781 - 785
1 Jun 2005
Temmerman OPP Raijmakers PGHM Berkhof J Hoekstra OS Teule GJJ Heyligers IC

In this meta-analysis we included 32 English-language articles published between January 1975 and June 2004 on the diagnostic performance of plain radiography, subtraction arthrography, nuclear arthrography and bone scintigraphy in detecting aseptic loosening of the femoral component, using criteria based on the Cochrane systematic review of screening and diagnostic tests.

The mean sensitivity and specificity were, respectively, 82% (95% confidence interval (CI) 76 to 87) and 81% (95% CI 73 to 87) for plain radiography and 85% (95% CI 75 to 91) and 83% (95% CI 75 to 89) for nuclear arthrography. Pooled sensitivity and specificity were, respectively, 86% (95% CI 74 to 93) and 85% (95% CI 77 to 91) for subtraction arthrography and 85% (95% CI 79 to 89) and 72% (95% CI 64 to 79) for bone scintigraphy. Although the diagnostic performance of the imaging techniques was not significantly different, plain radiography and bone scintigraphy are preferred for the assessment of a femoral component because of their efficacy and lower risk of patient morbidity.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims

The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty.

Methods

Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 984 - 991
6 Nov 2024
Molloy T Gompels B McDonnell S

Aims. This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. Methods. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components. Results. In Round 1, the study revealed widespread variability in stakeholder opinions on diagnostic components of STKIs. Round 2 identified patterns in the perceived importance of specific items within each diagnostic component. Round 3 produced rankings of perceived item importance within each diagnostic component. Noteworthy findings include the challenges associated with accurate and readily available diagnostic methods in acute care settings, the consistent acknowledgment of the importance of adopting a patient-centred approach to diagnosis, and the transition from divergent to convergent opinions between Rounds 2 and 3. Conclusion. This study highlights the potential for a paradigm shift in acute STKI diagnosis, where variability in the understanding of STKI diagnostic components may be addressed by establishing a uniform, evidence-based framework for evaluating these injuries. Cite this article: Bone Jt Open 2024;5(11):984–991


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1281 - 1288
3 Oct 2020
Chang JS Kayani B Plastow R Singh S Magan A Haddad FS

Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management. Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury. This article reviews the optimal diagnostic imaging methods and common classification systems used to guide the treatment of hamstring injuries. In addition, the indications and outcomes for both nonoperative and operative treatment are analyzed to provide an evidence-based management framework for these patients. Cite this article: Bone Joint J 2020;102-B(10):1281–1288


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims. This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients. Methods. With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05. Results. AdMSCs demonstrated stem cell-like characteristics. LOAD scores were significantly lower at week 4 compared with preinjection (p = 0.021). The mCOAST improved significantly after three months (p = 0.001) and six months (p = 0.001). Asymmmetry indices decreased from four weeks post-injection and remained significantly lower at six months (p = 0.025). Conclusion. These improvements in quality of life, reduction in pain on examination, and improved symmetry in dogs injected with AdMSCs and PRP support the effectiveness of this combined treatment for symptom modification in canine OA for six months. Cite this article: Bone Joint Res 2021;10(10):650–658


Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty for patients who require treatment of single-compartment osteoarthritis, especially for young patients. To satisfy this requirement, new patient-specific prosthetic designs have been introduced. The patient-specific UKA is designed on the basis of data from preoperative medical images. In general, knee implant design with increased conformity has been developed to provide lower contact stress and reduced wear on the tibial insert compared with flat knee designs. The different tibiofemoral conformity may provide designers the opportunity to address both wear and kinematic design goals simultaneously. The aim of this study was to evaluate wear prediction with respect to tibiofemoral conformity design in patient-specific UKA under gait loading conditions by using a previously validated computational wear method. Methods. Three designs with different conformities were developed with the same femoral component: a flat design normally used in fixed-bearing UKA, a tibia plateau anatomy mimetic (AM) design, and an increased conforming design. We investigated the kinematics, contact stress, contact area, wear rate, and volumetric wear of the three different tibial insert designs. Results. Conforming increased design showed a lower contact stress and increased contact area. In addition, increased conformity resulted in a reduction of the wear rate and volumetric wear. However, the increased conformity design showed limited kinematics. Conclusion. Our results indicated that increased conformity provided improvements in wear but resulted in limited kinematics. Therefore, increased conformity should be avoided in fixed-bearing patient-specific UKA design. We recommend a flat or plateau AM tibial insert design in patient-specific UKA. Cite this article: Y-G. Koh, K-M. Park, H-Y. Lee, K-T. Kang. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 2019;8:156–164. DOI: 10.1302/2046-3758.83.BJR-2018-0193.R1


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


Bone & Joint 360
Vol. 13, Issue 2 | Pages 23 - 26
1 Apr 2024

The April 2024 Foot & Ankle Roundup360 looks at: Safety of arthroscopy combined with radial extracorporeal shockwave therapy for osteochondritis of the talus; Bipolar allograft transplantation of the ankle; Identifying risk factors for osteonecrosis after talar fracture; Balancing act: immediate versus delayed weightbearing in ankle fracture recovery; Levelling the field: proximal supination osteotomy’s efficacy in severe and super-severe hallux valgus; Restoring balance: how adjusting the tibiotalar joint line influences movement after ankle surgery.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims

The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs.

Methods

The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).


Bone & Joint 360
Vol. 12, Issue 6 | Pages 46 - 47
1 Dec 2023

The December 2023 Research Roundup360 looks at: Tissue integration and chondroprotective potential of acetabular labral augmentation with autograft tendon: study of a porcine model; The Irish National Orthopaedic Register under cyberattack: what happened, and what were the consequences?; An overview of machine learning in orthopaedic surgery: an educational paper; Beware of the fungus…; New evidence for COVID-19 in patients undergoing joint replacement surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 422 - 424
1 May 2024
Theologis T Perry DC

In 2017, the British Society for Children’s Orthopaedic Surgery engaged the profession and all relevant stakeholders in two formal research prioritization processes. In this editorial, we describe the impact of this prioritization on funding, and how research in children’s orthopaedics, which was until very recently a largely unfunded and under-investigated area, is now flourishing. Establishing research priorities was a crucial step in this process.

Cite this article: Bone Joint J 2024;106-B(5):422–424.


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 227 - 229
1 Mar 2023
Theologis T Brady MA Hartshorn S Faust SN Offiah AC

Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical prediction tools.

Cite this article: Bone Joint J 2023;105-B(3):227–229.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1008 - 1014
1 Sep 2024
Prijs J Rawat J ten Duis K Assink N Harbers JS Doornberg JN Jadav B Jaarsma RL IJpma FFA

Aims

Paediatric triplane fractures and adult trimalleolar ankle fractures both arise from a supination external rotation injury. By relating the experience of adult to paediatric fractures, clarification has been sought on the sequence of injury, ligament involvement, and fracture pattern of triplane fractures. This study explores the similarities between triplane and trimalleolar fractures for each stage of the Lauge-Hansen classification, with the aim of aiding reduction and fixation techniques.

Methods

Imaging data of 83 paediatric patients with triplane fractures and 100 adult patients with trimalleolar fractures were collected, and their fracture morphology was compared using fracture maps. Visual fracture maps were assessed, classified, and compared with each other, to establish the progression of injury according to the Lauge-Hansen classification.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 708 - 714
22 Aug 2024
Mikhail M Riley N Rodrigues J Carr E Horton R Beale N Beard DJ Dean BJF

Aims

Complete ruptures of the ulnar collateral ligament (UCL) of the thumb are a common injury, yet little is known about their current management in the UK. The objective of this study was to assess the way complete UCL ruptures are managed in the UK.

Methods

We carried out a multicentre, survey-based cross-sectional study in 37 UK centres over a 16-month period from June 2022 to September 2023. The survey results were analyzed descriptively.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1321 - 1326
1 Dec 2023
Schlenzka T Serlo J Viljakka T Tallroth K Helenius I

Aims

We aimed to assess the cumulative risk of total hip arthroplasty (THA) from in situ fixation for slipped capital femoral epiphysis (SCFE) after a follow-up of almost 50 years.

Methods

In this study, 138 patients with 172 affected hips treated with in situ fixation were evaluated retrospectively. A total of 97 patients (70%) were male and the mean age was 13.6 years (SD 2.1); 35 patients (25%) had a bilateral disease. The median follow-up time was 49 years (interquartile range 43 to 55). Basic demographic, stability, and surgical details were obtained from patient records. Preoperative radiographs (slip angle; SA) were measured, and data on THA was gathered from the Finnish National Arthroplasty Register.


Bone & Joint 360
Vol. 12, Issue 5 | Pages 42 - 45
1 Oct 2023

The October 2023 Children’s orthopaedics Roundup360 looks at: Outcomes of open reduction in children with developmental hip dislocation: a multicentre experience over a decade; A torn discoid lateral meniscus impacts lower-limb alignment regardless of age; Who benefits from allowing the physis to grow in slipped capital femoral epiphysis?; Consensus guidelines on the management of musculoskeletal infection affecting children in the UK; Diagnosis of developmental dysplasia of the hip by ultrasound imaging using deep learning; Outcomes at a mean of 13 years after proximal humeral fracture during adolescence; Clubfeet treated according to Ponseti at four years; Controlled ankle movement boot provides improved outcomes with lower complications than short leg walking cast.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1081 - 1088
1 Sep 2022
Behman AL Bradley CS Maddock CL Sharma S Kelley SP

Aims

There is no consensus regarding optimum timing and frequency of ultrasound (US) for monitoring response to Pavlik harness (PH) treatment in developmental dysplasia of the hip (DDH). The purpose of our study was to determine if a limited-frequency hip US assessment had an adverse effect on treatment outcomes compared to traditional comprehensive US monitoring.

Methods

This study was a single-centre noninferiority randomized controlled trial. Infants aged under six months whose hips were reduced and centred in the harness at initiation of treatment (stable dysplastic or subluxable), or initially decentred (subluxated or dislocated) but reduced and centred within four weeks of PH treatment, were randomized to our current standard US monitoring protocol (every clinic visit) or to a limited-frequency US protocol (US only at end of treatment). Groups were compared based on α angle and femoral head coverage at the end of PH treatment, acetabular indices, and International Hip Dysplasia Institute (IHDI) grade on one-year follow-up radiographs.


Bone & Joint Open
Vol. 5, Issue 5 | Pages 385 - 393
13 May 2024
Jamshidi K Toloue Ghamari B Ammar W Mirzaei A

Aims

Ilium is the most common site of pelvic Ewing’s sarcoma (ES). Resection of the ilium and iliosacral joint causes pelvic disruption. However, the outcomes of resection and reconstruction are not well described. In this study, we report patients’ outcomes after resection of the ilium and iliosacral ES and reconstruction with a tibial strut allograft.

Methods

Medical files of 43 patients with ilium and iliosacral ES who underwent surgical resection and reconstruction with a tibial strut allograft between January 2010 and October 2021 were reviewed. The lesions were classified into four resection zones: I1, I2, I3, and I4, based on the extent of resection. Functional outcomes, oncological outcomes, and surgical complications for each resection zone were of interest. Functional outcomes were assessed using a Musculoskeletal Tumor Society (MSTS) score and Toronto Extremity Salvage Score (TESS).


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’).

Cite this article: Bone Joint J 2022;104-B(8):911–914.