Aims. Acquired heterotopic
Neurogenic heterotopic
Aims. Heterotopic
We developed a rat model of limb lengthening to study the basic mechanism of distraction osteogenesis, using a small monolateral external fixator. In 11-week-old male rats we performed a subperiosteal osteotomy in the midshaft of the femur with distraction at 0.25 mm every 12 hours from seven days after operation. Radiological and histological examinations showed a growth zone of constant thickness in the middle of the lengthened segment, with formation of new bone at its proximal and distal ends. Osteogenic cells were arranged longitudinally along the tension vector showing the origin and the fate of individual cells in a single section. Typical endochondral bone formation was prominent in the early stage of distraction, but intramembraneous bone formation became the predominant mechanism of
Aims. To clarify the asymmetrical
Aims. Surgical approaches to cervical
We evaluated the incidence of heterotopic ossification
following total ankle replacement to determine whether the degree
of
Aim. The primary aim of this retrospective study was to identify the
incidence of heterotopic
Heterotopic
Aims. Heterotopic
Aims. We aimed to assess the influence of ethnicity on the incidence
of heterotopic
1. Ectopic
Our study was designed to compare the effect of indometacin with that of a placebo in reducing the incidence of heterotopic
Seven men with a mean age of 63.9 years (59 to 67) developed dysphagia because of oesophageal compression with
We report the case of an 82-year-old man who
underwent fasciectomy for a severe Dupuytren’s contracture, during which
an ossified lesion was encountered within the contracture and surrounding
the neurovascular bundle. The abnormal tissue was removed with difficulty
and heterotopic
Aims. The optimal procedure for the treatment of
Aims. After the initial correction of congenital talipes equinovarus
(CTEV) using the Ponseti method, a subsequent dynamic deformity
is often managed by transfer of the tendon of tibialis anterior
(TATT) to the lateral cuneiform. Many surgeons believe the lateral
cuneiform should be ossified before surgery is undertaken. This
study quantifies the
We examined whether a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) was as effective as a non-selective inhibitor (ibuprofen) for the prevention of heterotopic
Aims. Heterotopic
Aims. The aim of this study was to assess the efficacy of non-selective
and selective non-steroidal anti-inflammatory drugs (NSAIDs) in
preventing heterotopic
Heterotopic
Heterotopic
1.
1. A clinical study has been made of heterotopic
Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.Aims
Methods
1. The occurrence of multiple centres of
Heterotopic
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
From 1981 to 1986 we treated 413 patients for acute spinal-cord injuries. We reviewed 356 patients followed for a minimum of two years of whom 71 (20%) developed heterotopic
Currently, there is no animal model in which
to evaluate the underlying physiological processes leading to the heterotopic
ossification (HO) which forms in most combat-related and blast wounds.
We sought to reproduce the
We retrospectively reviewed 89 consecutive patients
(45 men and 44 women) with a mean age at the time of injury of 58
years (18 to 97) who had undergone external fixation after sustaining
a unilateral fracture of the distal humerus. Our objectives were
to determine the incidence of heterotopic
We present nine patients (five men and four women) who underwent surgical excision of clinically significant heterotopic
1. The epiphyses of the metatarsal heads of 250-gramme rabbits were separated at the zone of cell columns, stripped of perichondrium, labelled with tritiated thymidine and transplanted into the back muscles of the same animals. 2. Endochondral
1. A case of
We have developed an animal model to examine the formation of heterotopic
We have carried out a prospective, randomised study of prophylaxis for heterotopic
Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR).Aims
Methods
From 1987 to 1991, we treated 53 patients with 54 fractures of the acetabulum by reconstruction through a posterior or an extended iliofemoral surgical approach. For prophylaxis against heterotopic
Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.Aims
Methods
Estimations of serum alkaline phosphatase were carried out prospectively on a series of patients having a total hip replacement. The levels of serum alkaline phosphatase before operation indicated a group of patients who subsequently developed heterotopic
1.
Throughout this work data have been gathered favouring the concept that the metaphysial vascular arrangement is primarily related to the process of enchondral
This study evaluates factors related to myelopathic
symptoms in patients with
In this work the role of the blood vessels surrounding the epiphysial growth plate has been studied. The nutritional dependence of the proliferative cells on the epiphysial vessels has been established whereas the metaphysial vessels were seen to take part in calcification and
In this series, 15 patients with
Two men, aged 21 and 50 years, were seen with
Heterotopic
1. Two boys complaining of pain in the ankle were shown to have centres of separate
We report a 72-year-old patient with thoracic myelopathy due to isolated
Old calcified fibrin coagula are frequently found in simple bone cysts. They provide a scaffold on which new bone is laid down, in a process analogous to endochondral
We studied radiographs of 125 children (105 boys, 20 girls) with unilateral Legg-Calvé-Perthes’ disease to examine the epiphyseal development of the femoral head in the contralateral (unaffected) hip. The epiphyseal height (EH) and width (EW) of the unaffected hip were measured on the initial anteroposterior pelvic radiograph. In 109 of the patients (87.2%) the EH was below the mean for normal Japanese children and a significantly small EH (below −2 . sd. s) was observed in 23 patients (18.4%). By contrast, the EW of most patients (95.2%) lay within ± 2 SDs of normal values except for six with a significantly small EW. A strong positive linear correlation (R = 0.87) was observed in the EH:EW ratio in the patients. A smaller EH than expected for EW in our series indicated epiphyseal flattening of the femoral head in Legg-Calvé-Perthes’ disease. Our findings support the hypothesis that a delay in endochondral
We report 14 cases of symptomatic
1. Serial radiographs of fifty-two normal children's feet, taken at six-monthly intervals between two and five years, have been reviewed. 2. Twenty-one naviculars have been injected post-mortem and the vascularisation of the growing bone investigated. 3. The records of sixty-two children with a diagnosis of KoÌhler's disease have been studied. 4. It is submitted that abnormal
Indomethacin is commonly administered for the prophylaxis of heterotopic
We report a prospective, randomised, blinded clinical comparison of the use of indomethacin or radiation therapy for the prevention of heterotopic
An eight-year-old boy presented with massive pseudomalignant heterotopic
LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action.Aims
Methods
Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion.Objectives
Methods
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases.
Early total hip replacement (THR) for acetabular
fractures offers accelerated rehabilitation, but a high risk of heterotopic
ossification (HO) has been reported. The purpose of this study was
to evaluate the incidence of HO, its associated risk factors and
functional impact. A total of 40 patients with acetabular fractures
treated with a THR weres retrospectively reviewed. The incidence
and severity of HO were evaluated using the modified Brooker classification,
and the functional outcome assessed. The overall incidence of HO
was 38%
(n = 15), with nine severe grade III cases. Patients who underwent
surgery early after injury had a fourfold increased chance of developing
HO. The mean blood loss and operating time were more than twice
that of those whose surgery was delayed (p = 0.002 and p <
0.001,
respectively). In those undergoing early THR, the incidence of grade
III HO was eight times higher than in those in whom THR was delayed
(p = 0.01). Only three of the seven patients with severe HO showed
good or excellent Harris hip scores compared with eight of nine
with class 0, I or II HO (p = 0.049). Associated musculoskeletal
injuries, high-energy trauma and head injuries were associated with
the development of grade III HO. The incidence of HO was significantly higher in patients with
a displaced acetabular fracture undergoing THR early compared with
those undergoing THR later and this had an adverse effect on the
functional outcome. Cite this article:
Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote Within the present study, we evaluated whether this promising new method, using 99mTc-hydroxydiphosphonate (99mTc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with 99mTc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured.Objectives
Methods
Many Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.Objectives
Methods
The continual cycle of bone formation and resorption
is carried out by osteoblasts, osteocytes, and osteoclasts under
the direction of the bone-signaling pathway. In certain situations
the host cycle of bone repair is insufficient and requires the assistance
of bone grafts and their substitutes. The fundamental properties
of a bone graft are osteoconduction, osteoinduction, osteogenesis,
and structural support. Options for bone grafting include autogenous
and allograft bone and the various isolated or combined substitutes
of calcium sulphate, calcium phosphate, tricalcium phosphate, and
coralline hydroxyapatite. Not all bone grafts will have the same
properties. As a result, understanding the requirements of the clinical
situation and specific properties of the various types of bone grafts
is necessary to identify the ideal graft. We present a review of
the bone repair process and properties of bone grafts and their
substitutes to help guide the clinician in the decision making process. Cite this article:
To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed Objectives
Methods
We have attempted to summarise in a short space investigations that have occupied several years, and we realise that whatever the merits of such an effort the results can only be modest. Many important aspects of the osteogenetic process still remain a mystery and thus are subjected to theory and controversy. Such is the case with this constant attendant at osteogenesis which is alkaline phosphatase. But of one thing we are certain, namely that bone is an organised "soft" tissue of which only part has been made rigid by the deposit of calcium salts. The organiser is the osteogenetic vessel from which springs the syncytial frame of cells and their connections on which the bone architecture is established. Endothelial cell, intermediate cell, osteoblast, osteocyte, osteoclast; these constitute the normal sequence of cellular phylogeny in the constant elaboration and removal of the bone substance. The initial cells on which the whole process rests are those of the capillary-sinusoid vessel which is responsible for providing the transudates on which the life and health of the whole syncytium depends. If our findings were confirmed, a better understanding of the nature and characteristics of primitive malignant bone tumours would be possible. Each type of tumour from endothelioma to malignant osteoclastoma, including reticulum-cell sarcoma and osteogenic sarcoma, would be initiated by a different cell of the syncytium, but in its monstrous deviation from the normal would still preserve most of the characteristics of its healthy ancestor. Thus the endothelioma causes bone expansion, bone reaction and even bone necrosis, but not proper bone formation, whereas the osteogenic sarcoma or osteoblastoma forms bone; and with the same fidelity to their origin osteoclasts are seen in the malignant osteolytic tumour. Over thirty years ago the late Sir Arthur Keith (1927) expressed his suspicion that the cells which assume a bone-forming role are derived from the endothelium of the capillary system. We hope we have contributed to show that his suspicion was right.
From this work it may be concluded that persistent compression affects the growth plate by interference with the blood flow on one or both sides of the growth cartilage. Despite exertion of the same pressure upon both sides of the growth plate, only the metaphysial side was readily affected in the early stages, for, as long as no damage was caused to the epiphysial side of the growth cartilage, the lesions were fully reversible. Interference with growth was directly proportionate to the damage caused by compression to the epiphysial side of the growth plate and, in general, to the duration of compression. The first signs of interference with the metaphysial side of the plate were the lack of vascular progression and concomitant retardation of calcification. When severe degeneration was not present the growth cartilage recovered within four days. The matrix was ready for calcification all the time, as shown by the extremely rapid calcification occurring soon after the compression had ceased and the vessels were able to reach their proper place. It seems justified to believe that the first hypertrophic cell not to be calcified after removal of the clamp is the one around which the matrix has not yet changed sufficiently to have an affinity for the apatite crystals. As in moderate compression, the division of the proliferative cells continues and it seems it must be the age, or even more likely the distance from the transudate coming from the epiphysial side of the growth cartilage that conditions the maturity of the cell, which prepares the field for calcification and thus initiates the osteogenic process. Views similar to this have been advanced by Ham (1957) and his school.
We report a postal survey of 59 families of children with osteogenesis imperfecta. From the 51 replies we collected data on developmental milestones and walking ability and related them to the Sillence and the Shapiro classifications of osteogenesis imperfecta. Twenty-four of the patients had been treated by intramedullary rodding. Both classifications helped to predict eventual walking ability. We found that independent sitting by the age of ten months was a predictor for the use of walking as the main means of mobility with 76% attaining this. Of the patients who did not achieve sitting by ten months, walking became the main means of mobility in only 18%. The developmental pattern of mobility was similar in the rodded and non-rodded patients.
In a clinical, radiological and biochemical study of forty-two patients from Oxford with osteogenesis imperfecta, it was found that patients could be divided simply into mild, moderate and severe groups according to deformity of long bones. In the severe group (seventeen patients) a family history of affected members was uncommon and fractures began earlier and were more frequent than in the mild group (twenty-two patients); sixteen patients in the severe group had scoliosis and eleven had white sclerae; no patients in the mild group had white sclerae or scoliosis. Radiological examination of the femur showed only minor modelling defects in patients in the mild group, whereas in the severe group five distinct appearances of bone (thin, thick, cystic and buttressed bones, and those with hyperplastic callus) were seen. The polymeric (structural) collagen from skin was unstable to depolymerisation in patients in the severe group, but normal in amount, whereas the reverse was found in the mild group. This division according to long bone deformity may provide a basis for future research more useful than previous classifications.
1. The venographic findings in clinical primary osteoarthritis are described. 2. Experimental venous engorgement, of the knee joint and of healing fibular fractures, results in accelerated bone formation and disturbed cartilage formation. 3. Changes in pH, ppCO2, and PPO2 are indicated as the chemical means by which chondrogenesis and osteogenesis can be altered. 4. It is suggested that chronic venous stress in joints is a causal factor in primary osteoarthritis.
1. Two girls with non-familial osteogenesis imperfecta who subsequently developed osteosarcoma of the femur are described. One is of special interest in that there were multiple bone metastases. 2. It is suggested that the tumours arose spontaneously and were not related to the underlying bone disorder. 3. Because of the relative frequency of hyperplastic callus formation in osteogenesis imperfecta it is most important that adequate biopsy material of any suspicious lesion is examined because the early clinical picture may be indistinguishable from a tumour.
1. Fifty operations of fragmentation and rodding in the long bones of patients with osteogenesis imperfecta are reported. 2. The technique of the operation is described and a modification of Sofield's original method is suggested. 3. The results and complications of treatment are described.
1. The pattern of tritiated thymidine labelling in the cells of the epiphysial cartilage and metaphysis of the tibia in the rat is described for intervals of one hour to twenty-eight days after injection. 2. The region of dividing cells is defined and evidence given for a zone of reserve cells at the top of the cartilage columns. 3. The difficulties of quantitative grain count studies are discussed, and some approximate values are given for the generation time and mitotic cycle periods of the cartilage plate cells. 4. Some further evidence is given about the life cycles of the osteoblast and the osteoclast.
This paper describes a procedure of activating osteogenesis by the use of the "petal" technique. The osteogenetic effect of these "petals" has been established in experimentally produced fractures and pseudarthroses in rats by radiographical, biomechanical, mechanical and histological examinations. The conventional concept of the osteogenetic activity of bone transplants is discussed. The authors feel that this method will find its clinical application in the operative treatment of pseudarthroses and, in selected cases, of fractures that are known for their tendency to unite slowly.
We report the results of distraction osteogenesis (callotasis) for the reconstruction of extensive defects after the excision of skeletal tumours in the limbs. Bone transport was performed in ten patients (five osteosarcomas and five giant-cell tumours), shortening-distraction in three (two osteosarcomas and one Ewing’s sarcoma), and distraction osteogenesis combined with an intramedullary nail to reduce the time of external fixation in six (three osteosarcomas, two chondro-sarcomas, and one malignant fibrous histiocytoma). The mean length of the defects after excision of the lesion was 8.4 cm. The mean external fixation index was 39.5 days/cm for the group treated by bone transport, 34.1 days/cm for the shortening-distraction group, and 24.0 days/cm for the group treated by distraction and an intramedullary nail. Functional evaluation gave excellent results in 12 patients, good in five and fair in two. There were ten complications in 19 patients, all of which were successfully treated. We also classified reconstruction using distraction osteogenesis into five types based on the location of the defects after resection of the tumour: type 1, diaphyseal; type 2, metaphyseal; type 3, epiphyseal; type 4, subarticular reconstruction; and type 5, arthrodesis. Our results suggest that reconstruction using distraction osteogenesis provides bone which will develop sufficient biomechanical strength and durability. It is beneficial in patients with an expectation of long-term survival and in growing children.
A case of hyperplastic callus formation is reported in a girl of eleven; several bones were affected. There were no associated fractures. She is believed to be suffering from a mild non-familial type of osteogenesis imperfecta without blue sclerotics and presents multiple bony excrescences unassociated with injury. The relevant literature is reviewed. The effect of a trial of treatment with A.C.T.H. and with deep x-ray is reported.
Results are given of a study of four cases of osteogenesis imperfecta using biophysical methods comprising microradiography, microscopy using polarised light, and x-ray diffraction. Rebuilding of bone tissue was infrequent in the material studied and has been shown to occur in an abnormal manner. The mineralisation of the bone is more uniform than is found in normal bone. The collagen has an abnormal organisation and is sparse. The ultrastructure of bone salts and their orientation are as in normal bone.
In patients with traumatic brain injury and fractures
of long bones, it is often clinically observed that the rate of bone
healing and extent of callus formation are increased. However, the
evidence has been unconvincing and an association between such an
injury and enhanced fracture healing remains unclear. We performed
a retrospective cohort study of 74 young adult patients with a mean
age of 24.2 years (16 to 40) who sustained a femoral shaft fracture
(AO/OTA type 32A or 32B) with or without a brain injury. All the
fractures were treated with closed intramedullary nailing. The main
outcome measures included the time required for bridging callus
formation (BCF) and the mean callus thickness (MCT) at the final
follow-up. Comparative analyses were made between the 20 patients
with a brain injury and the 54 without brain injury. Subgroup comparisons
were performed among the patients with a brain injury in terms of
the severity of head injury, the types of intracranial haemorrhage
and gender. Patients with a brain injury had an earlier appearance
of BCF
(p <
0.001) and a greater final MCT value (p <
0.001) than
those without. There were no significant differences with respect
to the time required for BCF and final MCT values in terms of the
severity of head injury (p = 0.521 and p = 0.153, respectively),
the types of intracranial haemorrhage (p = 0.308 and p = 0.189,
respectively) and gender (p = 0.383 and
p = 0.662, respectively). These results confirm that an injury to the brain may be associated
with accelerated fracture healing and enhanced callus formation.
However, the severity of the injury to the brain, the type of intracranial
haemorrhage and gender were not statistically significant factors
in predicting the rate of bone healing and extent of final callus formation.
Most patients with dominantly inherited osteogenesis imperfecta have blue sclerae and relatively mild symptoms. However, in a small group of families the patients have normal sclerae and this disorder has been classified as Type 4 osteogenesis imperfecta. This paper reports the clinical and radiographical features of 48 patients from 16 families with Type 4 osteogenesis imperfecta and compares the findings with those of the classical disorder with blue sclerae (Type 1 osteogenesis imperfecta). The two types are similar in usually causing a mild disease but with a wide range of severity, and in both types the rate of fracture declines in adolescence. There are, however, some significant differences apart from the colour of the sclerae. In Type 4 the first fracture more commonly occurs at birth, dentinogenesis imperfecta is more frequent than in Type 1 and bruising and nose-bleeds are less common. As in Type 1, the radiographic appearances of the bones may be normal. It is important that Type 4 osteogenesis imperfecta should be recognised because of the need for competent genetic counselling, because the management may be different from that appropriate for Type 1 and because it may be mistaken for idiopathic juvenile osteoporosis or child abuse.
1. Six cases of development of heterotopic bone around joints in association with paralysis from intracranial lesions are presented. It is suggested that such bone may occur more commonly than is realised. 2. The features of these cases are very similar to those seen in association with paraplegia. 3. Extensive new bone is usually associated with fixed contractures. 4. Operation is hazardous in paraplegia but should not necessarily be so in other paralytic conditions. 5. In the presence of returning motor function excision of the bone, allowing correction of the deformity together with some movement, is a worthwhile procedure. In the hip, osteotomy alone usually requires plaster fixation with the attendant risks of venous thrombosis. Previous excision of the bone allows internal fixation of the osteotomy with early mobilisation.
1. In the experiments undertaken autogenous vesical mucosal transplants were made in guinea-pigs. The transplanted mucosa proliferates and forms a nodule. Central necrosis of the nodule and the secretion of the proliferating epithelium combine to form a cyst filled with a viscous fluid. 2. Before the cyst is well defined some of this fluid diffuses into the sub-epithelial connective tissue, producing areas of tissue oedema which later are transformed into translucent hyaloid islands. With further condensation of the collagen fibres, these areas are converted into primitive bone. The hyaloid islands act as a bone precursor. Bone always formed in the wall of the cyst within thirty days except in cases of sepsis or death of the transplant, when there was no osteogenesis. Homografts of vesical mucosa were found unreliable in their capacity to induce bone. 3. The results of the histochemical investigation and radiographic diffraction of the hyaloid areas suggest that the proliferating mucosa is the source of the inducing agent. 4. Bone can be induced only in sites where a primitive vascular connective tissue is growing and where there exists an adequate blood supply. 5. The rapid rate of osteogenesis can be seen in the radiographs of induced bone in radial defects. The electron-microscopic study of the induced bone at three weeks confirmed that osteoid had been formed so quickly that calcification had not yet taken place. 6. The relationship between the bone induced by transplanting vesical epithelium and the formation of urinary calculi is discussed and their common origin postulated.
We describe a patient in whom an initially intact sciatic nerve became rapidly encased in heterotopic bone formed in the abductor compartment after reconstruction of the posterior wall of the acetabulum following fracture. Prompt excision and neural release followed by irradiation and administration of indometacin resulted in a full neurological recovery and no recurrence 27 months later.
The need for bone tissue supplementation exists in a wide range
of clinical conditions involving surgical reconstruction in limbs,
the spine and skull. The bone supplementation materials currently
used include autografts, allografts and inorganic matrix components;
but these pose potentially serious side-effects. In particular the
availability of the autografts is usually limited and their harvesting
causes surgical morbidity. Therefore for the purpose of supplementation
of autologous bone graft, we have developed a method for autologous
extracorporeal bone generation. Human osteoblast-like cells were seeded on porous granules of
tricalcium phosphate and incubated in osteogenic media while exposed
to mechanical stimulation by vibration in the infrasonic range of
frequencies. The generated tissue was examined microscopically following
haematoxylin eosin, trichrome and immunohistochemical staining.Objectives
Methods
The role of three genetically distinct collagen types in the formation of endochondral bone and in calcification and resorption of cartilage has been assessed. Using antibodies specific to types I, II and III collagen we have demonstrated in the embryonic chick tibia that endochondral bone formation began with deposition of type III collagen in lacunae of hypertropic chondrocytes by invading bone-marrow-derived cells. This was followed by the deposition of type I collagen, which is the collagenous constituent of endochondral osteoid. At later stages of development endochondral osteoid was found in the epiphysial growth plate in apparently intact lacunae of hypertrophic chondrocytes; this indicated that the latter might contribute to the synthesis of osteoid type I collagen. Immuno-histological staining for collagen types, and von Kossa staining for calcium phosphate on parallel sections, demonstrated that type I and type II collagen matrices were substrates for calcification. Endochondral bone (with type I collagen) was found on scaffolding of both uncalcified and calcified cartilage (with type II collagen), indicating that calcification of endochondral osteoid and of the underlying cartilage occurred independentyl. Spicules of endochondral cancellous bone of a four-week-old chick contained a core of calcified type II collagen.
1. It has been shown that in experimental rickets the well known changes in the epiphysial cartilage which so seriously affect growth are accompanied by severe interference with the progress of the metaphysial vessels into the growth cartilage. 2. Further evidence has been found that, by the repeated increase in their number, the cartilage cells occupying the more distal part of the proliferative segment become more and more affected by their remoteness from the epiphysial vessels, which supply the transudates to these cells. At a given distance these cells are affected and change, becoming hypertrophic, with increasingly large vacuolae, and are rich in glycogen and alkaline phosphatase. 3. The hypertrophic cells alter the nature of the intercellular substance they deposit and this becomes calcifiable. Provided that the metaphysial vessels are situated at an appropriate distance–about three cell capsules away–and that the blood has its necessary components, calcification occurs. 4. Calcification produces the advancing, rigid multitubular structure within which the progressing metaphysial vessels are protected. 5. The interruption of calcification by the withdrawal of fat-soluble vitamins breaks down the whole mechanism of growth and stops the vessels growing into their proper position. The administration of the required vitamins re-establishes the normal sequence of events and allows the vessels to play their decisive role in osteogenesis. 6. Any mechanism which causes the interruption of the vascular progression, whether from metaphysial ischaemia (Trueta and Amato 1960), from severe pressure (Trueta and Trias 1961) or from lack of calcification by withdrawing the fat-soluble vitamins, equally interrupts growth.
It has been shown in experimental animals that the living cells in a bone autograft can make an important contribution to osteogenesis. However, some common clinical techniques, such as the topical use of antibiotic powders on grafts or on the graft bed, are likely to damage or kill the cells. In this experimental study in rats, bone isografts dusted with chloramphenicol or methicillin powder or with Polybactrin spray before subcutaneous implantation produced little or no new bone over a period of two weeks whereas untreated, control grafts showed abundant osteogenesis, as did grafts pretreated with solutions of antibiotics. The effect of short-term storage of the grafts for 3 to 24 hours in air, saline or culture medium before implantation was also examined. Grafts stored in culture medium generally did as well as, or better than, fresh control grafts whereas immersion in saline inhibited osteogenesis. The importance of these results for clinical bone grafting is discussed.
The October 2023 Spine Roundup. 360. looks at: Cutting through surgical smoke: the science of cleaner air in spinal operations; Unlocking success: key factors in thoracic spine decompression and fusion for
The August 2023 Trauma Roundup. 360. looks at: A comparison of functional cast and volar-flexion ulnar deviation for dorsally displaced distal radius fractures; Give your stable ankle fractures some AIR!; Early stabilization of rib fractures – an effective thing to do?; Locked plating versus nailing for proximal tibia fractures: A multicentre randomized controlled trial; Time to flap coverage in open tibia fractures; Does tranexamic acid affect the incidence of heterotropic