Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients.Aims
Methods
Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle.Aims
Methods
Aims. Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters. Methods. An
Aims. Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel
Abnormal knee kinematics following reconstruction
of the anterior cruciate ligament may exist despite an apparent resolution
of tibial laxity and functional benefit. We performed upright, weight-bearing
MR scans of both knees in the sagittal plane at different angles
of flexion to determine the kinematics of the knee following unilateral reconstruction
(n = 12). The uninjured knee acted as a control. Scans were performed
pre-operatively and at three and six months post-operatively. Anteroposterior
tibial laxity was determined using an arthrometer and patient function
by validated questionnaires before and after reconstruction. In
all the knees with deficient anterior cruciate ligaments, the tibial
plateau was displaced anteriorly and internally rotated relative
to the femur when compared with the control contralateral knee,
particularly in extension and early flexion (mean lateral compartment displacement:
extension 7.9 mm ( Our results show that despite improvement in laxity and functional
benefit, abnormal knee kinematics remain at six months and actually
deteriorate from three to six months following reconstruction of
the anterior cruciate ligament.