The aim of this study was to investigate the effect of a posterior
malleolar fragment (PMF), with <
25% ankle joint surface, on
pressure distribution and joint-stability. There is still little
scientific evidence available to advise on the size of PMF, which
is essential to provide treatment. To date, studies show inconsistent
results and recommendations for surgical treatment date from 1940. A total of 12 cadaveric ankles were assigned to two study groups.
A trimalleolar fracture was created, followed by open reduction
and internal fixation. PMF was fixed in Group I, but not in Group
II. Intra-articular pressure was measured and cyclic loading was
performed.Aims
Materials and Methods
It has previously been suggested that among unstable
ankle fractures, the presence of a malleolar fracture is associated
with a worse outcome than a corresponding ligamentous injury. However,
previous studies have included heterogeneous groups of injury. The
purpose of this study was to determine whether any specific pattern of
bony and/or ligamentous injury among a series of supination-external
rotation type IV (SER IV) ankle fractures treated with anatomical
fixation was associated with a worse outcome. We analysed a prospective cohort of 108 SER IV ankle fractures
with a follow-up of one year. Pre-operative radiographs and MRIs
were undertaken to characterise precisely the pattern of injury.
Operative treatment included fixation of all malleolar fractures.
Post-operative CT was used to assess reduction. The primary and
secondary outcome measures were the Foot and Ankle Outcome Score
(FAOS) and the range of movement of the ankle. There were no clinically relevant differences between the four
possible SER IV fracture pattern groups with regard to the FAOS
or range of movement. In this population of strictly defined SER
IV ankle injuries, the presence of a malleolar fracture was not
associated with a significantly worse clinical outcome than its
ligamentous injury counterpart. Other factors inherent to the injury
and treatment may play a more important role in predicting outcome.
In a series of 126 consecutive pilon fractures, we have described anatomically explicable fragments. Fracture lines describing these fragments have revealed ten types of pilon fracture which belong to two families, sagittal and coronal. The type of fracture is dictated by the energy of injury, the direction of the force of injury and the age of the patient.