This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.Aims
Methods
The aim of this study was to explore the prognostic factors for postoperative neurological recovery and survival in patients with complete paralysis due to neoplastic epidural spinal cord compression. The medical records of 135 patients with complete paralysis due to neoplastic cord compression were retrospectively reviewed. Potential factors including the timing of surgery, muscular tone, and tumour characteristics were analyzed in relation to neurological recovery using logistical regression analysis. The association between neurological recovery and survival was analyzed using a Cox model. A nomogram was formulated to predict recovery.Aims
Patients and Methods
Spinal stenosis and disc herniation are the two
most frequent causes of lumbosacral nerve root compression. This
can result in muscle weakness and present with or without pain. The
difficulty when managing patients with these conditions is knowing
when surgery is better than non-operative treatment: the evidence
is controversial. Younger patients with a lesser degree of weakness
for a shorter period of time have been shown to respond better to surgical
treatment than older patients with greater weakness for longer.
However, they also constitute a group that fares better without
surgery. The main indication for surgical treatment in the management
of patients with lumbosacral nerve root compression should be pain
rather than weakness.
We describe three patients with pre-ganglionic (avulsion) injuries of the brachial plexus which caused a partial Brown-Séquard syndrome.
An 18-year-old man who presented with weakness in his lower limbs, had an upper motor