Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims

Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI.

Methods

In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 872 - 879
1 Jul 2019
Li S Zhong N Xu W Yang X Wei H Xiao J

Aims

The aim of this study was to explore the prognostic factors for postoperative neurological recovery and survival in patients with complete paralysis due to neoplastic epidural spinal cord compression.

Patients and Methods

The medical records of 135 patients with complete paralysis due to neoplastic cord compression were retrospectively reviewed. Potential factors including the timing of surgery, muscular tone, and tumour characteristics were analyzed in relation to neurological recovery using logistical regression analysis. The association between neurological recovery and survival was analyzed using a Cox model. A nomogram was formulated to predict recovery.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1442 - 1447
1 Nov 2012
Sharma H Lee SWJ Cole AA

Spinal stenosis and disc herniation are the two most frequent causes of lumbosacral nerve root compression. This can result in muscle weakness and present with or without pain. The difficulty when managing patients with these conditions is knowing when surgery is better than non-operative treatment: the evidence is controversial. Younger patients with a lesser degree of weakness for a shorter period of time have been shown to respond better to surgical treatment than older patients with greater weakness for longer. However, they also constitute a group that fares better without surgery. The main indication for surgical treatment in the management of patients with lumbosacral nerve root compression should be pain rather than weakness.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 88 - 90
1 Jan 2009
Nordin L Sinisi M

We describe three patients with pre-ganglionic (avulsion) injuries of the brachial plexus which caused a partial Brown-Séquard syndrome.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 267 - 268
1 Mar 2000
Lunawat SK Taneja DK

An 18-year-old man who presented with weakness in his lower limbs, had an upper motor neurone lesion at the D12-L1 level. At laminectomy two stone-like objects were found which proved to be bundles of tiny pieces of wood. They are thought to have entered the cord through an abdominal penetrating injury sustained six years previously