Osteoporosis (OP) is a metabolic bone disease, characterized by a decrease in bone mineral density (BMD). However, the research of regulatory variants has been limited for BMD. In this study, we aimed to explore novel regulatory genetic variants associated with BMD. We conducted an integrative analysis of BMD genome-wide association study (GWAS) and regulatory single nucleotide polymorphism (rSNP) annotation information. Firstly, the discovery GWAS dataset and replication GWAS dataset were integrated with rSNP annotation database to obtain BMD associated SNP regulatory elements and SNP regulatory element-target gene (E-G) pairs, respectively. Then, the common genes were further subjected to HumanNet v2 to explore the biological effects.Aims
Methods
Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear. In this study, we used transcriptome data to reveal crosstalk between different tissues in OA. We used four groups of transcription profiles acquired from the Gene Expression Omnibus database, including articular cartilage, meniscus, synovium, and subchondral bone, to screen differentially expressed genes during OA. Potential crosstalk between tissues was depicted by ligand-receptor pairs.Aims
Methods
The aim of this study was to provide a comprehensive understanding of alterations in messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in cartilage affected by osteoarthritis (OA). The expression profiles of mRNAs, lncRNAs, and circRNAs in OA cartilage were assessed using whole-transcriptome sequencing. Bioinformatics analyses included prediction and reannotation of novel lncRNAs and circRNAs, their classification, and their placement into subgroups. Gene ontology and pathway analysis were performed to identify differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed circRNAs (DECs). We focused on the overlap of DEGs and targets of DELs previously identified in seven high-throughput studies. The top ten DELs were verified by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in articular chondrocytes, both Objectives
Methods