Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including
The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.Aims
Methods
Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.Aims
Methods
The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded.Aims
Patients and Methods
Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.Objectives
Methods
We carried out a prospective study of 71 patients who had undergone reconstruction of the anterior cruciate ligament with the ABC scaffold. Their mean age was 28 years (18 to 50). All had either sub-acute or chronic traumatic deficiency of the ligament. The mean period of follow-up was five years (four to seven). Assessment included the use of the International Knee Documentation Committee score, the modified Lysholm score, the Tegner Activity score, the Knee Injury and Osteoarthritis Outcome score and measurement with the KT-1000 arthrometer. Two patients had mild recurrent synovitis. There were no infections and no failures of the ligament. During the period of study, two patients sustained a traumatic fracture of a femoral condyle. The implants retained their integrity in both cases. All patients returned to their previous or enhanced levels of daily activity by three months after operation and 56 (79%) achieved their pre-injury level of sporting activity by six months. The patients who were competing in National level sports returned to play at one level less after operation than before. The Lysholm score showed that 58% of the patients (41) were excellent, 34% (24) good, and 8% (6) fair, with a mean post-operative score of 93. According to the International Knee Documentation Committee score, 35% of knees (25) were ‘normal’, 52% (37) ‘nearly normal’ and 13% (9) ‘abnormal’. Complete satisfaction was noted in 90% of patients (64). The development of osteoarthritis and the management of anterior cruciate deficiency associated with laxity of the medial collateral ligament remains uncertain. Our results indicate that in the medium-term, the ABC ligament scaffold is suitable and effective when early and safe return to unrestricted activities is demanded. We acknowledge the current general hostility towards reconstruction of the anterior cruciate ligament with artificial materials following reports of early failure and chronic synovitis associatiated with the production of particulate debris. We did not encounter these problems.