Advertisement for orthosearch.org.uk
Results 1 - 20 of 32
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation.

Cite this article: Bone Joint J 2024;106-B(9):892–897.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 94 - 100
5 Feb 2024
Mancino F Kayani B Gabr A Fontalis A Plastow R Haddad FS

Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes.

Cite this article: Bone Jt Open 2024;5(2):94–100.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 850 - 856
1 Aug 2023
Azamgarhi T Warren S Fouch S Standing JF Gerrand C

The recently published Prophylactic Antibiotic Regimens In Tumor Surgery (PARITY) trial found no benefit in extending antibiotic prophylaxis from 24 hours to five days after endoprosthetic reconstruction for lower limb bone tumours. PARITY is the first randomized controlled trial in orthopaedic oncology and is a huge step forward in understanding antibiotic prophylaxis. However, significant gaps remain, including questions around antibiotic choice, particularly in the UK, where cephalosporins are avoided due to concerns of Clostridioides difficile infection. We present a review of the evidence for antibiotic choice, dosing, and timing, and a brief description of PARITY, its implication for practice, and the remaining gaps in our understanding.

Cite this article: Bone Joint J 2023;105-B(8):850–856.


Bone & Joint Open
Vol. 4, Issue 1 | Pages 13 - 18
5 Jan 2023
Walgrave S Oussedik S

Abstract

Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan.

Cite this article: Bone Jt Open 2023;4(1):13–18.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


Bone & Joint Open
Vol. 3, Issue 3 | Pages 268 - 274
21 Mar 2022
Krishnan H Eldridge JD Clark D Metcalfe AJ Stevens JM Mandalia V

Recognized anatomic variations that lead to patella instability include patella alta and trochlea dysplasia. Lateralization of the extensor mechanism relative to the trochlea is often considered to be a contributing factor; however, controversy remains as to the degree this contributes to instability and how this should be measured. As the tibial tuberosity-trochlear groove (TT-TG) is one of most common imaging measurements to assess lateralization of the extensor mechanism, it is important to understand its strengths and weaknesses. Care needs to be taken while interpreting the TT-TG value as it is affected by many factors. Medializing tibial tubercle osteotomy is sometimes used to correct the TT-TG, but may not truly address the underlying anatomical problem. This review set out to determine whether the TT-TG distance sufficiently summarizes the pathoanatomy, and if this assists with planning of surgery in patellar instability.

Cite this article: Bone Jt Open 2022;3(3):268–274.


Bone & Joint Open
Vol. 3, Issue 1 | Pages 85 - 92
27 Jan 2022
Loughenbury PR Tsirikos AI

The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 8 - 11
1 Jan 2022
Wright-Chisem J Elbuluk AM Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes.

Cite this article: Bone Joint J 2022;104-B(1):8–11.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 822 - 827
1 May 2021
Buzzatti L Keelson B Vanlauwe J Buls N De Mey J Vandemeulebroucke J Cattrysse E Scheerlinck T

Evaluating musculoskeletal conditions of the lower limb and understanding the pathophysiology of complex bone kinematics is challenging. Static images do not take into account the dynamic component of relative bone motion and muscle activation. Fluoroscopy and dynamic MRI have important limitations. Dynamic CT (4D-CT) is an emerging alternative that combines high spatial and temporal resolution, with an increased availability in clinical practice. 4D-CT allows simultaneous visualization of bone morphology and joint kinematics. This unique combination makes it an ideal tool to evaluate functional disorders of the musculoskeletal system. In the lower limb, 4D-CT has been used to diagnose femoroacetabular impingement, patellofemoral, ankle and subtalar joint instability, or reduced range of motion. 4D-CT has also been used to demonstrate the effect of surgery, mainly on patellar instability. 4D-CT will need further research and validation before it can be widely used in clinical practice. We believe, however, it is here to stay, and will become a reference in the diagnosis of lower limb conditions and the evaluation of treatment options.

Cite this article: Bone Joint J 2021;103-B(5):822–827.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1281 - 1288
3 Oct 2020
Chang JS Kayani B Plastow R Singh S Magan A Haddad FS

Injuries to the hamstring muscle complex are common in athletes, accounting for between 12% and 26% of all injuries sustained during sporting activities. Acute hamstring injuries often occur during sports that involve repetitive kicking or high-speed sprinting, such as American football, soccer, rugby, and athletics. They are also common in watersports, including waterskiing and surfing. Hamstring injuries can be career-threatening in elite athletes and are associated with an estimated risk of recurrence in between 14% and 63% of patients. The variability in prognosis and treatment of the different injury patterns highlights the importance of prompt diagnosis with magnetic resonance imaging (MRI) in order to classify injuries accurately and plan the appropriate management.

Low-grade hamstring injuries may be treated with nonoperative measures including pain relief, eccentric lengthening exercises, and a graduated return to sport-specific activities. Nonoperative management is associated with highly variable times for convalescence and return to a pre-injury level of sporting function. Nonoperative management of high-grade hamstring injuries is associated with poor return to baseline function, residual muscle weakness and a high-risk of recurrence. Proximal hamstring avulsion injuries, high-grade musculotendinous tears, and chronic injuries with persistent weakness or functional compromise require surgical repair to enable return to a pre-injury level of sporting function and minimize the risk of recurrent injury.

This article reviews the optimal diagnostic imaging methods and common classification systems used to guide the treatment of hamstring injuries. In addition, the indications and outcomes for both nonoperative and operative treatment are analyzed to provide an evidence-based management framework for these patients.

Cite this article: Bone Joint J 2020;102-B(10):1281–1288.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 222 - 228
9 Jun 2020
Liow MHL Tay KXK Yeo NEM Tay DKJ Goh SK Koh JSB Howe TS Tan AHC

The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented challenges to healthcare systems worldwide. Orthopaedic departments have adopted business continuity models and guidelines for essential and non-essential surgeries to preserve hospital resources as well as protect patients and staff. These guidelines broadly encompass reduction of ambulatory care with a move towards telemedicine, redeployment of orthopaedic surgeons/residents to the frontline battle against COVID-19, continuation of education and research through web-based means, and cancellation of non-essential elective procedures. However, if containment of COVID-19 community spread is achieved, resumption of elective orthopaedic procedures and transition plans to return to normalcy must be considered for orthopaedic departments. The COVID-19 pandemic also presents a moral dilemma to the orthopaedic surgeon considering elective procedures. What is the best treatment for our patients and how does the fear of COVID-19 influence the risk-benefit discussion during a pandemic? Surgeons must deliberate the fine balance between elective surgery for a patient’s wellbeing versus risks to the operating team and utilization of precious hospital resources. Attrition of healthcare workers or Orthopaedic surgeons from restarting elective procedures prematurely or in an unsafe manner may render us ill-equipped to handle the second wave of infections. This highlights the need to develop effective screening protocols or preoperative COVID-19 testing before elective procedures in high-risk, elderly individuals with comorbidities. Alternatively, high-risk individuals should be postponed until the risk of nosocomial COVID-19 infection is minimal. In addition, given the higher mortality and perioperative morbidity of patients with COVID-19 undergoing surgery, the decision to operate must be carefully deliberated. As we ramp-up elective services and get “back to business” as orthopaedic surgeons, we have to be constantly mindful to proceed in a cautious and calibrated fashion, delivering the best care, while maintaining utmost vigilance to prevent the resurgence of COVID-19 during this critical transition period.

Cite this article: Bone Joint Open 2020;1-6:222–228.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 568 - 572
1 May 2020
McDonnell JM Ahern DP Ó Doinn T Gibbons D Rodrigues KN Birch N Butler JS

Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal.

There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced.

Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described.

The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery.

Cite this article: Bone Joint J 2020;102-B(5):568–572.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 241 - 245
1 Mar 2019
Leaver T Johnson B Lampard J Aarvold A Uglow M

Aims

The aim of this study was to quantify the risk of developing cancer from the exposure to radiation associated with surgery to correct limb deformities in children.

Patients and Methods

A total of 35 children were studied. There were 19 girls and 16 boys. Their mean age was 11.9 years (2 to 18) at the time of surgery. Details of the radiological examinations were recorded during gradual correction using a Taylor Spatial Frame. The dose area product for each radiograph was obtained from the Computerised Radiology Information System database. The effective dose in millisieverts (mSv) was calculated using conversion coefficients for the anatomical area. The lifetime risk of developing cancer was calculated using government-approved Health Protection Agency reports, accounting for the age and gender of the child.


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 132 - 139
1 Feb 2019
Karczewski D Winkler T Renz N Trampuz A Lieb E Perka C Müller M

Aims. In 2013, we introduced a specialized, centralized, and interdisciplinary team in our institution that applied a standardized diagnostic and treatment algorithm for the management of prosthetic joint infections (PJIs). The hypothesis for this study was that the outcome of treatment would be improved using this approach. Patients and Methods. In a retrospective analysis with a standard postoperative follow-up, 95 patients with a PJI of the hip and knee who were treated with a two-stage exchange between 2013 and 2017 formed the study group. A historical cohort of 86 patients treated between 2009 and 2011 not according to the standardized protocol served as a control group. The success of treatment was defined according to the Delphi criteria in a two-year follow-up. Results. Patients in the study group had a significantly higher Charlson Comorbidity Index (3.9 vs 3.1; p = 0.009) and rate of previous revisions for infection (52.6% vs 36%; p = 0.025), and tended to be older (69.0 vs 66.2 years; p = 0.075) with a broader polymicrobial spectrum (47.3% vs 33.7%; p = 0.062). The rate of recurrent infection (3.1% vs 10.4%; p = 0.048) and the mean time interval between the two stages of the procedure (66.6 vs 80.7 days; p < 0.001) were reduced significantly in the study group compared with the control group. Conclusion. We were able to show that the outcome following the treatment of PJIs of the hip and knee is better when managed in a separate department with an interdisciplinary team using a standard algorithm


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 559 - 565
1 May 2018
Bartlett JD Lawrence JE Stewart ME Nakano N Khanduja V

Aims

The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research.

Materials and Methods

A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results’ titles, abstracts, and references were examined for relevance.


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 127 - 133
1 Feb 2018
Tarabichi M Shohat N Goswami K Parvizi J

Aims. The diagnosis of periprosthetic joint infection can be difficult due to the high rate of culture-negative infections. The aim of this study was to assess the use of next-generation sequencing for detecting organisms in synovial fluid. Materials and Methods. In this prospective, single-blinded study, 86 anonymized samples of synovial fluid were obtained from patients undergoing aspiration of the hip or knee as part of the investigation of a periprosthetic infection. A panel of synovial fluid tests, including levels of C-reactive protein, human neutrophil elastase, total neutrophil count, alpha-defensin, and culture were performed prior to next-generation sequencing. Results. Of these 86 samples, 30 were alpha-defensin-positive and culture-positive (Group I), 24 were alpha-defensin-positive and culture-negative (Group II) and 32 were alpha-defensin-negative and culture-negative (Group III). Next-generation sequencing was concordant with 25 results for Group I. In four of these, it detected antibiotic resistant bacteria whereas culture did not. In another four samples with relatively low levels of inflammatory biomarkers, culture was positive but next-generation sequencing was negative. A total of ten samples had a positive next-generation sequencing result and a negative culture. In five of these, alpha-defensin was positive and the levels of inflammatory markers were high. In the other five, alpha-defensin was negative and the levels of inflammatory markers were low. While next-generation sequencing detected several organisms in each sample, in most samples with a higher probability of infection, there was a predominant organism present, while in those presumed not to be infected, many organisms were identified with no predominant organism. Conclusion. Pathogens causing periprosthetic infection in both culture-positive and culture-negative samples of synovial fluid could be identified by next-generation sequencing. Cite this article: Bone Joint J 2018;100-B:127–33


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 11 - 19
1 Jan 2018
Darrith B Courtney PM Della Valle CJ

Aims

Instability remains a challenging problem in both primary and revision total hip arthroplasty (THA). Dual mobility components confer increased stability, but there are concerns about the unique complications associated with these designs, as well as the long-term survivorship.

Materials and Methods

We performed a systematic review of all English language articles dealing with dual mobility THAs published between 2007 and 2016 in the MEDLINE and Embase electronic databases. A total of 54 articles met inclusion criteria for the final analysis of primary and revision dual mobility THAs and dual mobility THAs used in the treatment of fractures of the femoral neck. We analysed the survivorship and rates of aseptic loosening and of intraprosthetic and extra-articular dislocation.


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1571 - 1576
1 Dec 2017
Jacofsky DJ

‘Big data’ is a term for data sets that are so large or complex that traditional data processing applications are inadequate. Billions of dollars have been spent on attempts to build predictive tools from large sets of poorly controlled healthcare metadata. Companies often sell reports at a physician or facility level based on various flawed data sources, and comparative websites of ‘publicly reported data’ purport to educate the public. Physicians should be aware of concerns and pitfalls seen in such data definitions, data clarity, data relevance, data sources and data cleaning when evaluating analytic reports from metadata in health care.

Cite this article: Bone Joint J 2017;99-B:1571–6.


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1431 - 1434
1 Nov 2017
Jacofsky DJ

Modern healthcare contracting is shifting the responsibility for improving quality, enhancing community health and controlling the total cost of care for patient populations from payers to providers. Population-based contracting involves capitated risk taken across an entire population, such that any included services within the contract are paid for by the risk-bearing entity throughout the term of the agreement. Under such contracts, a risk-bearing entity, which may be a provider group, a hospital or another payer, administers the contract and assumes risk for contractually defined services. These contracts can be structured in various ways, from professional fee capitation to full global per member per month diagnosis-based risk. The entity contracting with the payer must have downstream network contracts to provide the care and facilities that it has agreed to provide. Population health is a very powerful model to reduce waste and costs. It requires a deep understanding of the nuances of such contracting and the appropriate infrastructure to manage both networks and risk.

Cite this article: Bone Joint J 2017;99-B:1431–4.