Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 361 - 364
1 Apr 2019
Rodeo SA

Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research. Cite this article: Bone Joint J 2019;101-B:361–364


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1267 - 1279
1 Oct 2017
Chughtai M Piuzzi NS Khlopas A Jones LC Goodman SB Mont MA

Non-traumatic osteonecrosis of the femoral head is a potentially devastating condition, the prevalence of which is increasing. Many joint-preserving forms of treatment, both medical and surgical, have been developed in an attempt to slow or reverse its progression, as it usually affects young patients.

However, it is important to evaluate the best evidence that is available for the many forms of treatment considering the variation in the demographics of the patients, the methodology and the outcomes in the studies that have been published, so that it can be used effectively.

The purpose of this review, therefore, was to provide an up-to-date, evidence-based guide to the management, both non-operative and operative, of non-traumatic osteonecrosis of the femoral head.

Cite this article: Bone Joint J 2017;99-B:1267–79.


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 40 - 44
1 Oct 2015
Thienpont E Lavand'homme P Kehlet H

Total knee arthroplasty (TKA) is a major orthopaedic intervention. The length of a patient's stay has been progressively reduced with the introduction of enhanced recovery protocols: day-case surgery has become the ultimate challenge.

This narrative review shows the potential limitations of day-case TKA. These constraints may be social, linked to patient’s comorbidities, or due to surgery-related adverse events (e.g. pain, post-operative nausea and vomiting, etc.).

Using patient stratification, tailored surgical techniques and multimodal opioid-sparing analgesia, day-case TKA might be achievable in a limited group of patients. The younger, male patient without comorbidities and with an excellent social network around him might be a candidate.

Demographic changes, effective recovery programmes and less invasive surgical techniques such as unicondylar knee arthroplasty, may increase the size of the group of potential day-case patients.

The cost reduction achieved by day-case TKA needs to be balanced against any increase in morbidity and mortality and the cost of advanced follow-up at a distance with new technology. These factors need to be evaluated before adopting this ultimate ‘fast-track’ approach.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):40–4.