Sarcopenia is characterized by a generalized progressive loss of skeletal muscle mass, strength, and physical performance. This systematic review primarily evaluated the effects of sarcopenia on postoperative functional recovery and mortality in patients undergoing orthopaedic surgery, and secondarily assessed the methods used to diagnose and define sarcopenia in the orthopaedic literature. A systematic search was conducted in MEDLINE, EMBASE, and Google Scholar databases according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Studies involving sarcopenic patients who underwent defined orthopaedic surgery and recorded postoperative outcomes were included. The quality of the criteria by which a diagnosis of sarcopenia was made was evaluated. The quality of the publication was assessed using Newcastle-Ottawa Scale.Aims
Methods
To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism.Aims
Methods
Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery. Cite this article:
Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery, augmented reality (AR) may become an important tool for surgeons in the future. By superimposing a digital image on a user’s view of the physical world, this technology shows great promise in orthopaedics. The aim of this review is to investigate the current and potential uses of AR in orthopaedics. A systematic review of the PubMed, MEDLINE, and Embase databases up to January 2019 using the keywords ‘orthopaedic’ OR ‘orthopedic AND augmented reality’ was performed by two independent reviewers.Aims
Materials and Methods
Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking.Aims
Methods
Objectives. Although
The purpose of the study was to investigate whether closed intramedullary
(IM) nailing with percutaneous cement augmentation is better than
conventional closed nailing at relieving pain and suppressing tumours
in patients with metastases of the femur and humerus. A total of 43 patients (27 men, 16 women, mean age 63.7 years,
standard deviation (Aims
Patients and Methods
The widespread use of MRI has revolutionised
the diagnostic process for spinal disorders. A typical protocol
for spinal MRI includes T1 and T2 weighted sequences in both axial
and sagittal planes. While such an imaging protocol is appropriate
to detect pathological processes in the vast majority of patients,
a number of additional sequences and advanced techniques are emerging.
The purpose of the article is to discuss both established techniques
that are gaining popularity in the field of spinal imaging and to
introduce some of the more novel ‘advanced’ MRI sequences with examples
to highlight their potential uses. Cite this article:
Percutaneous placement of pedicle screws is a
well-established technique, however, no studies have compared percutaneous
and open placement of screws in the thoracic spine. The aim of this
cadaveric study was to compare the accuracy and safety of these
techniques at the thoracic spinal level. A total of 288 screws were
inserted in 16 (eight cadavers, 144 screws in percutaneous and eight
cadavers, 144 screws in open). Pedicle perforations and fractures
were documented subsequent to wide laminectomy followed by skeletalisation
of the vertebrae. The perforations were classified as grade 0: no
perforation, grade 1: <
2 mm perforation, grade 2: 2 mm to 4
mm perforation and grade 3: >
4 mm perforation. In the percutaneous
group, the perforation rate was 11.1% with 15 (10.4%) grade 1 and
one (0.7%) grade 2 perforations. In the open group, the perforation
rate was 8.3% (12 screws) and all were grade 1. This difference
was not significant (p = 0.45). There were 19 (13.2%) pedicle fractures
in the percutaneous group and 21 (14.6%) in the open group (p =
0.73). In summary, the safety of percutaneous fluoroscopy-guided
pedicle screw placement in the thoracic spine between T4 and T12
is similar to that of the conventional open technique. Cite this article:
The October 2015 Spine Roundup360 looks at: Traumatic spinal cord injury under the spotlight; The odontoid peg nonunion; Driving and spinal surgery; Drains and antibiotics post-spinal surgery;
We undertook a retrospective study investigating
the accuracy and safety of percutaneous pedicle screws placed under
fluoroscopic guidance in the lumbosacral junction and lumbar spine.
The CT scans of patients were chosen from two centres: European
patients from University Medical Center Hamburg-Eppendorf, Germany,
and Asian patients from the University of Malaya, Malaysia. Screw
perforations were classified into grades 0, 1, 2 and 3. A total
of 880 percutaneous pedicle screws from 203 patients were analysed:
614 screws from 144 European patients and 266 screws from 59 Asian
patients. The mean age of the patients was 58.8 years (16 to 91)
and there were 103 men and 100 women. The total rate of perforation
was 9.9% (87 screws) with 7.4% grade 1, 2.0% grade 2 and 0.5% grade
3 perforations. The rate of perforation in Europeans was 10.4% and
in Asians was 8.6%, with no significant difference between the two
(p = 0.42). The rate of perforation was the highest in S1 (19.4%)
followed by L5 (14.9%). The accuracy and safety of percutaneous
pedicle screw placement are comparable to those cited in the literature
for the open method of pedicle screw placement. Greater caution
must be taken during the insertion of L5 and S1 percutaneous pedicle
screws owing to their more angulated pedicles, the anatomical variations
in their vertebral bodies and the morphology of the spinal canal
at this location. Cite this article: