Aims. The aim of this study was to prepare a scoping review to investigate the use of biologic therapies in the treatment of musculoskeletal injuries in professional and Olympic athletes. Methods. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews and Arksey and O’Malley frameworks were followed. A three-step search strategy identified relevant published primary and secondary studies, as well as grey literature. The identified studies were screened with criteria for inclusion comprising clinical studies evaluating the use of biologic therapies in professional and Olympic athletes, systematic reviews, consensus statements, and conference proceedings. Data were extracted using a standardized tool to form a descriptive analysis and a thematic summary. Results. A total of 202 studies were initially identified, and 35 met criteria for the scoping review; 33 (94.3%) were published within the last eight years, and 18 (51.4%) originated from the USA. Platelet rich plasma was the most studied biologic therapy, being evaluated in 33 (94.3%) studies.
This paper describes the presence of tenodesis effects in normal physiology and explores the uses of operative tenodesis in surgery of the upper limb.
The fracture most commonly treated by orthopaedic surgeons is that of the distal radius. However, as yet there is no consensus on what constitutes an ‘acceptable’ radiological position before or after treatment. This should be defined as the position that will predict good function in the majority of cases. In this paper we review the radiological indices that can be measured in fractures of the distal radius and try to identify potential predictors of functional outcome. In patients likely to have high functional demands, we recommend that the articular reconstruction be achieved with less than 2 mm of gap or step-off, the radius be restored to within 2 mm of its normal length, and that carpal alignment be restored. The ultimate aim of treatment is a pain-free, mobile wrist joint without functional limitation.
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.