Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Bone & Joint Research
Vol. 12, Issue 8 | Pages 504 - 511
23 Aug 2023
Wang C Liu S Chang C

Aims

This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model.

Methods

A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims

To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle.

Methods

In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 252 - 259
1 May 2022
Cho BW Kang K Kwon HM Lee W Yang IH Nam JH Koh Y Park KK

Aims. This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). Methods. 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed. Results. The distance from the distal stem tip to the shortest cortical bone showed no statistically significant difference between implants. However, the peak von Mises stress around the distal stem tip was higher with STC than with ATC. In the medial half of the proximal tibial bone: 1) the mean von Mises stress, maximum principal strain, and minimum principal strain were higher with ATC; 2) ATC showed a positive correlation between the distance and mean von Mises stress; 3) ATC showed a negative correlation between the distance and mean minimum principal strain; and 4) STC showed no correlation between the distance and mean measurements. Conclusion. Implant design affects the load distribution on the periprosthetic tibial bone, and ATC can be more advantageous in preventing stress-shielding than STC. However, under certain circumstances with short distances, the advantage of ATC may be offset. Cite this article: Bone Joint Res 2022;11(5):252–259


Aims

There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation.

Methods

Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 1 - 9
1 Jan 2021
Garner A Dandridge O Amis AA Cobb JP van Arkel RJ

Aims

Unicompartmental knee arthroplasty (UKA) and bicompartmental knee arthroplasty (BCA) have been associated with improved functional outcomes compared to total knee arthroplasty (TKA) in suitable patients, although the reason is poorly understood. The aim of this study was to measure how the different arthroplasties affect knee extensor function.

Methods

Extensor function was measured for 16 cadaveric knees and then retested following the different arthroplasties. Eight knees underwent medial UKA then BCA, then posterior-cruciate retaining TKA, and eight underwent the lateral equivalents then TKA. Extensor efficiency was calculated for ranges of knee flexion associated with common activities of daily living. Data were analyzed with repeated measures analysis of variance (α = 0.05).


Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims

The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated.

Methods

Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 645 - 652
5 Oct 2020
Chao C Chen Y Lin J

Aims. To determine whether half-threaded screw holes in a new titanium locking plate design can substantially decrease the notch effects of the threads and increase the plate fatigue life. Methods. Three types (I to III) of titanium locking plates were fabricated to simulate plates used in the femur, tibia, and forearm. Two copies of each were fabricated using full- and half-threaded screw holes (called A and B, respectively). The mechanical strengths of the plates were evaluated according to the American Society for Testing and Materials (ASTM) F382-14, and the screw stability was assessed by measuring the screw removal torque and bending strength. Results. The B plates had fatigue lives 11- to 16-times higher than those of the A plates. Before cyclic loading, the screw removal torques were all higher than the insertion torques. However, after cyclic loading, the removal torques were similar to or slightly lower than the insertion torques (0% to 17.3%), although those of the B plates were higher than those of the A plates for all except the type III plates (101%, 109.8%, and 93.8% for types I, II, and III, respectively). The bending strengths of the screws were not significantly different between the A and B plates for any of the types. Conclusion. Removing half of the threads from the screw holes markedly increased the fatigue life of the locking plates while preserving the tightness of the screw heads and the bending strength of the locking screws. However, future work is necessary to determine the relationship between the notch sensitivity properties and titanium plate design. Cite this article: Bone Joint Res 2020;9(10):645–652


Aims

Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation.

Methods

We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 493 - 500
1 Aug 2020
Fletcher JWA Zderic I Gueorguiev B Richards RG Gill HS Whitehouse MR Preatoni E

Aims

To devise a method to quantify and optimize tightness when inserting cortical screws, based on bone characterization and screw geometry.

Methods

Cortical human cadaveric diaphyseal tibiae screw holes (n = 20) underwent destructive testing to firstly establish the relationship between cortical thickness and experimental stripping torque (Tstr), and secondly to calibrate an equation to predict Tstr. Using the equation’s predictions, 3.5 mm screws were inserted (n = 66) to targeted torques representing 40% to 100% of Tstr, with recording of compression generated during tightening. Once the target torque had been achieved, immediate pullout testing was performed.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 55 - 64
1 Feb 2019
Danese I Pankaj P Scott CEH

Objectives. Elevated proximal tibial bone strain may cause unexplained pain, an important cause of unicompartmental knee arthroplasty (UKA) revision. This study investigates the effect of tibial component alignment in metal-backed (MB) and all-polyethylene (AP) fixed-bearing medial UKAs on bone strain, using an experimentally validated finite element model (FEM). Methods. A previously experimentally validated FEM of a composite tibia implanted with a cemented fixed-bearing UKA (MB and AP) was used. Standard alignment (medial proximal tibial angle 90°, 6° posterior slope), coronal malalignment (3°, 5°, 10° varus; 3°, 5° valgus), and sagittal malalignment (0°, 3°, 6°, 9°, 12°) were analyzed. The primary outcome measure was the volume of compressively overstrained cancellous bone (VOCB) < -3000 µε. The secondary outcome measure was maximum von Mises stress in cortical bone (MSCB) over a medial region of interest. Results. Varus malalignment decreased VOCB but increased MSCB in both implants, more so in the AP implant. Varus malalignment of 10° reduced the VOCB by 10% and 3% in AP and MB implants but increased the MSCB by 14% and 13%, respectively. Valgus malalignment of 5° increased the VOCB by 8% and 4% in AP and MB implants, with reductions in MSCB of 7% and 10%, respectively. Sagittal malalignment displayed negligible effects. Well-aligned AP implants displayed greater VOCB than malaligned MB implants. Conclusion. All-polyethylene implants are more sensitive to coronal plane malalignments than MB implants are; varus malalignment reduced cancellous bone strain but increased anteromedial cortical bone stress. Sagittal plane malalignment has a negligible effect on bone strain. Cite this article: I. Danese, P. Pankaj, C. E. H. Scott. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: A comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res 2019;8:55–64. DOI: 10.1302/2046-3758.82.BJR-2018-0186.R2


Bone & Joint Research
Vol. 7, Issue 12 | Pages 639 - 649
1 Dec 2018
MacLeod AR Serrancoli G Fregly BJ Toms AD Gill HS

Objectives. Opening wedge high tibial osteotomy (HTO) is an established surgical procedure for the treatment of early-stage knee arthritis. Other than infection, the majority of complications are related to mechanical factors – in particular, stimulation of healing at the osteotomy site. This study used finite element (FE) analysis to investigate the effect of plate design and bridging span on interfragmentary movement (IFM) and the influence of fracture healing on plate stress and potential failure. Materials and Methods. A 10° opening wedge HTO was created in a composite tibia. Imaging and strain gauge data were used to create and validate FE models. Models of an intact tibia and a tibia implanted with a custom HTO plate using two different bridging spans were validated against experimental data. Physiological muscle forces and different stages of osteotomy gap healing simulating up to six weeks postoperatively were then incorporated. Predictions of plate stress and IFM for the custom plate were compared against predictions for an industry standard plate (TomoFix). Results. For both plate types, long spans increased IFM but did not substantially alter peak plate stress. The custom plate increased axial and shear IFM values by up to 24% and 47%, respectively, compared with the TomoFix. In all cases, a callus stiffness of 528 MPa was required to reduce plate stress below the fatigue strength of titanium alloy. Conclusion. We demonstrate that larger bridging spans in opening wedge HTO increase IFM without substantially increasing plate stress. The results indicate, however, that callus healing is required to prevent fatigue failure. Cite this article: A. R. MacLeod, G. Serrancoli, B. J. Fregly, A. D. Toms, H. S. Gill. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: An experimental and finite element study. Bone Joint Res 2018;7:639–649. DOI: 10.1302/2046-3758.712.BJR-2018-0035.R1


Bone & Joint Research
Vol. 7, Issue 8 | Pages 501 - 507
1 Aug 2018
Phan C Nguyen D Lee KM Koo S

Objectives

The objective of this study was to quantify the relative movement between the articular surfaces in the tibiotalar and subtalar joints during normal walking in asymptomatic individuals.

Methods

3D movement data of the ankle joint complex were acquired from 18 subjects using a biplanar fluoroscopic system and 3D-to-2D registration of bone models obtained from CT images. Surface relative velocity vectors (SRVVs) of the articular surfaces of the tibiotalar and subtalar joints were calculated. The relative movement of the articulating surfaces was quantified as the mean relative speed (RS) and synchronization index (SIENT) of the SRVVs.


Objectives

Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs.

Methods

Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests.