The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity. Cite this article:
Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF. Cite this article:
The anterior cruciate ligament (ACL) is frequently injured in elite athletes, with females up to eight times more likely to suffer an ACL tear than males. Biomechanical and hormonal factors have been thoroughly investigated; however, there remain unknown factors that need investigation. The mechanism of injury differs between males and females, and anatomical differences contribute significantly to the increased risk in females. Hormonal factors, both endogenous and exogenous, play a role in ACL laxity and may modify the risk of injury. However, data are still limited, and research involving oral contraceptives is potentially associated with methodological and ethical problems. Such characteristics can also influence the outcome after ACL reconstruction, with higher failure rates in females linked to a smaller diameter of the graft, especially in athletes aged < 21 years. The addition of a lateral extra-articular tenodesis can improve the outcomes after ACL reconstruction and reduce the risk of failure, and it should be routinely considered in young elite athletes. Sex-specific environmental differences can also contribute to the increased risk of injury, with more limited access to and availablility of advanced training facilities for female athletes. In addition, football kits are designed for male players, and increased attention should be focused on improving the quality of pitches, as female leagues usually play the day after male leagues. The kit, including boots, the length of studs, and the footballs themselves, should be tailored to the needs and body
Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty. Cite this article:
Deep infection was identified as a serious complication in the earliest days of total hip arthroplasty. It was identified that airborne contamination in conventional operating theatres was the major contributing factor. As progress was made in improving the engineering of operating theatres, airborne contamination was reduced. Detailed studies were carried out relating airborne contamination to deep infection rates. In a trial conducted by the United Kingdom Medical Research Council (MRC), it was found that the use of ultra-clean air (UCA) operating theatres was associated with a significant reduction in deep infection rates. Deep infection rates were further reduced by the use of a body exhaust system. The MRC trial also included a detailed microbiology study, which confirmed the relationship between airborne contamination and deep infection rates. Recent observational evidence from joint registries has shown that in contemporary practice, infection rates remain a problem, and may be getting worse. Registry observations have also called into question the value of “laminar flow” operating theatres. Observational evidence from joint registries provides very limited evidence on the efficacy of UCA operating theatres. Although there have been some changes in surgical practice in recent years, the conclusions of the MRC trial remain valid, and the use of UCA is essential in preventing deep infection. There is evidence that if UCA operating theatres are not used correctly, they may have poor microbiological performance. Current UCA operating theatres have limitations, and further research is required to update them and improve their microbiological performance in contemporary practice. Cite this article:
The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO2) nanotube arrays is reviewed. Cite this article:
To demonstrate, with concrete examples, the value of in-depth
exploration and comparison of data published in National Joint Arthroplasty
registry reports. The author reviewed published current reports of National Joint
Arthroplasty registries for findings of current significance to
current orthopaedic practice.Aims
Patients and Methods
Orthopaedic surgery is in an exciting transitional period as modern surgical interventions, implants and scientific developments are providing new therapeutic options. As advances in basic science and technology improve our understanding of the pathology and repair of musculoskeletal tissue, traditional operations may be replaced by newer, less invasive procedures which are more appropriately targeted at the underlying pathophysiology. However, evidence-based practice will remain a basic requirement of care. Orthopaedic surgeons can and should remain at the forefront of the development of novel therapeutic interventions and their application. Progression of the potential of bench research into an improved array of orthopaedic treatments in an effective yet safe manner will require the development of a subgroup of specialists with extended training in research to play an important role in bridging the gap between laboratory science and clinical practice. International regulations regarding the introduction of new biological treatments will place an additional burden on the mechanisms of this translational process, and orthopaedic surgeons who are trained in science, surgery and the regulatory environment will be essential. Training and supporting individuals with these skills requires special consideration and discussion by the orthopaedic community. In this paper we review some traditional approaches to the integration of orthopaedic science and surgery, the therapeutic potential of current regenerative biomedical science for cartilage repair and ways in which we may develop surgeons with the skills required to translate scientific discovery into effective and properly assessed orthopaedic treatments.
Advances in hip arthroscopy have renewed interest in the ligamentum teres. Considered by many to be a developmental vestige, it is now recognised as a significant potential source of pain and mechanical symptoms arising from the hip joint. Despite improvements in imaging, arthroscopy remains the optimum method of diagnosing lesions of the ligamentum teres. Several biological or mechanical roles have been proposed for the ligament. Unless these are disproved, the use of surgical procedures that sacrifice the ligamentum teres, as in surgical dislocation of the hip, should be carefully considered. This paper provides an update on the development, structure and function of the ligamentum teres, and discusses associated clinical implications.
In an adult man the mean femoral anteversion angle measures approximately 15°, for which the reasons have never been fully elucidated. An assortment of simian and quadruped mammalian femora was therefore examined and the anteversion angles measured. A simple static mathematical model was then produced to explain the forces acting on the neck of the femur in the quadruped and in man. Femoral anteversion was present in all the simian and quadruped femora and ranged between 4° and 41°. It thus appears that man has retained this feature despite evolving from quadrupedal locomotion. Quadrupeds generally mobilise with their hips flexed forwards from the vertical; in this position, it is clear that anteversion gives biomechanical advantage against predominantly vertical forces. In man with mobilisation on vertical femora, the biomechanical advantage of anteversion is against forces acting mainly in the horizontal plane. This has implications in regard to the orientation of hip replacements.