Aims. This study aimed to investigate whether the use of CT-based navigation enhances: 1) the accuracy of cup placement; and 2) the achievement rate of required range of motion (ROM). Additionally, we investigated the impact of using a large femoral head and dual-mobility liner on the achievement rates. Methods. This retrospective study analyzed 60 manual and 51 CT-based navigated primary total hip arthroplasties performed at a single facility. Postoperative CT scans and CT-based simulation software were employed to measure the cup
Sagittal lumbar pelvic alignment alters with posterior pelvic tilt (PT) following total hip arthroplasty (THA) for developmental dysplasia of the hip (DDH). The individual value of pelvic sagittal inclination (PSI) following rebalancing of lumbar-pelvic alignment is unknown. In different populations, PT regresses in a linear relationship with pelvic incidence (PI). PSI and PT have a direct relationship to each other via a fixed individual angle ∠γ. This study aimed to investigate whether the new PI created by acetabular component positioning during THA also has a linear regression relationship with PT/PSI when lumbar-pelvic alignment rebalances postoperatively in patients with Crowe type III/IV DDH. Using SPINEPARA software, we measured the pelvic sagittal parameters including PI, PT, and PSI in 61 patients with Crowe III/IV DDH. Both PSI and PT represent the pelvic tilt state, and the difference between their values is ∠γ (PT = PSI + ∠γ). The regression equation between PI and PT at one year after THA was established. By substituting ∠γ, the relationship between PI and PSI was also established. The Bland-Altman method was used to evaluate the consistency between the PSI calculated by the linear regression equation (ePSI) and the actual PSI (aPSI) measured one year postoperatively.Aims
Methods
The development of lumbar lordosis has been traditionally examined using angular measurements of the spine to reflect its shape. While studies agree regarding the increase in the angles during growth, the growth rate is understudied, and sexual dimorphism is debated. In this study, we used a novel method to estimate the shape of the lumbar curve (LC) using the landmark-based geometric morphometric method to explore changes in LC during growth, examine the effect of size and sex on LC shape, and examine the associations between angular measurements and shape. The study population included 258 children aged between 0 and 20 years (divided into five age groups) who underwent a CT scan between the years 2009 and 2019. The landmark-based geometric morphometric method was used to capture the LC shape in a sagittal view. Additionally, the lordosis was measured via Cobb and sacral slope angles. Multivariate and univariate statistical analyses were carried out to examine differences in shape between males and females and between the age groups.Aims
Methods
Trauma & Orthopaedic (T&O) surgery has come under scrutiny for lagging behind other medical specialties in promoting gender and cultural equity and diversity within their workforce. The proportions of female, ethnic minority, and sexual and gender minority individuals within orthopaedic membership bodies are disproportionate to the populations they serve. The aim of this study is to report the findings of a national workforce survey of demographics and working patterns within T&O in Scotland. A questionnaire devised by a working group was delivered by the Client Analyst and Relationship Development (CARD) group. Utilizing a secure third party ensured anonymity for all respondents. Data were recorded and analyzed by the CARD group.Aims
Methods
Hallux valgus (HV) presents as a common forefoot deformity that causes problems with pain, mobility, footwear, and quality of life. The most common open correction used in the UK is the Scarf and Akin osteotomy, which has good clinical and radiological outcomes and high levels of patient satisfaction when used to treat a varying degrees of deformity. However, there are concerns regarding recurrence rates and long-term outcomes. Minimally invasive or percutaneous surgery (MIS) has gained popularity, offering the potential for similar clinical and radiological outcomes with reduced postoperative pain and smaller scars. Despite this, MIS techniques vary widely, hindering comparison and standardization. This review evaluates the evidence for both open Scarf and Akin osteotomy and newer-generation MIS techniques. Fourth-generation MIS emphasizes multiplanar rotational deformity correction through stable fixation. While MIS techniques show promise, their evidence mainly comprises single-surgeon case series. Comparative studies between open and MIS techniques suggest similar clinical and radiological outcomes, although MIS may offer advantages in scar length and less early postoperative pain. MIS may afford superior correction in severe deformity and lower recurrence rates due to correcting the bony deformity rather than soft-tissue correction. Recurrence remains a challenge in HV surgery, necessitating long-term follow-up and standardized outcome measures for assessment. Any comparison between the techniques requires comparative studies. Surgeons must weigh the advantages and risks of both open and MIS approaches in collaboration with patients to determine the most suitable treatment. Cite this article:
Aims. Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system. Methods. We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup
Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes.Aims
Methods
The transepicondylar axis is a well-established reference for the determination of femoral component rotation in total knee arthroplasty (TKA). However, when severe bone loss is present in the femoral condyles, rotational alignment can be more complicated. There is a lack of validated landmarks in the supracondylar region of the distal femur. Therefore, the aim of this study was to analyze the correlation between the surgical transepicondylar axis (sTEA) and the suggested dorsal cortex line (DCL) in the coronal plane and the inter- and intraobserver reliability of its CT scan measurement. A total of 75 randomly selected CT scans were measured by three experienced surgeons independently. The DCL was defined in the coronal plane as a tangent to the dorsal femoral cortex located 75 mm above the joint line in the frontal plane. The difference between sTEA and DCL was calculated. Descriptive statistics and angulation correlations were generated for the sTEA and DCL, as well as for the distribution of measurement error for intra- and inter-rater reliability.Aims
Methods
The December 2024 Knee Roundup360 looks at: Unicompartmental knee arthroplasty and total knee arthroplasty in the same patient?; Lateral unicompartmental knee arthroplasty: is it a good option?; The fate of the unresurfaced patellae in contemporary total knee arthroplasty: early- to mid-term results; Tibial baseplate migration is not associated with change in PROMs and clinical scores after total knee arthroplasty; Unexpected positive intraoperative cultures in aseptic revision knee arthroplasty: what effect does this have?; Kinematic or mechanical alignment in total knee arthroplasty surgery?; Revision total knee arthroplasty achieves minimal clinically important difference faster than primary total knee arthroplasty; Outcomes after successful DAIR for periprosthetic joint infection in total knee arthroplasty.
Approximately 10% to 20% of knee arthroplasty patients are not satisfied with the result, while a clear indication for revision surgery might not be present. Therapeutic options for these patients, who often lack adequate quadriceps strength, are limited. Therefore, the primary aim of this study was to evaluate the clinical effect of a novel rehabilitation protocol that combines low-load resistance training (LL-RT) with blood flow restriction (BFR). Between May 2022 and March 2024, we enrolled 45 dissatisfied knee arthroplasty patients who lacked any clear indication for revision to this prospective cohort study. All patients were at least six months post-surgery and had undergone conventional physiotherapy previously. The patients participated in a supervised LL-RT combined with BFR in 18 sessions. Primary assessments included the following patient-reported outcome measures (PROMs): Knee injury and Osteoarthritis Outcome Score (KOOS); Knee Society Score: satisfaction (KSSs); the EuroQol five-dimension five-level questionnaire (EQ-5D-5L); and the pain catastrophizing scale (PCS). Functionality was assessed using the six-minute walk Test (6MWT) and the 30-second chair stand test (30CST). Follow-up timepoints were at baseline, six weeks, three months, and six months after the start.Aims
Methods
Lisfranc injuries were previously described as fracture-dislocations of the tarsometatarsal joints. With advancements in modern imaging, subtle Lisfranc injuries are now more frequently recognized, revealing that their true incidence is much higher than previously thought. Injury patterns can vary widely in severity and anatomy. Early diagnosis and treatment are essential to achieve good outcomes. The original classification systems were anatomy-based, and limited as tools for guiding treatment. The current review, using the best available evidence, instead introduces a stability-based classification system, with weightbearing radiographs and CT serving as key diagnostic tools. Stable injuries generally have good outcomes with nonoperative management, most reliably treated with immobilization and non-weightbearing for six weeks. Displaced or comminuted injuries require surgical intervention, with open reduction and internal fixation (ORIF) being the most common approach, with a consensus towards bridge plating. While ORIF generally achieves satisfactory results, its effectiveness can vary, particularly in high-energy injuries. Primary arthrodesis remains niche for the treatment of acute injuries, but may offer benefits such as lower rates of post-traumatic arthritis and hardware removal. Novel fixation techniques, including suture button fixation, aim to provide flexible stabilization, which theoretically could improve midfoot biomechanics and reduce complications. Early findings suggest promising functional outcomes, but further studies are required to validate this method compared with established techniques. Future research should focus on refining stability-based classification systems, validation of weightbearing CT, improving rehabilitation protocols, and optimizing surgical techniques for various injury patterns to ultimately enhance patient outcomes. Cite this article:
As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee. Cite this article:
There has been limited literature regarding outcomes of acetabular rim syndrome (ARS) with persistent acetabular os in the setting of acetabular dysplasia. The purpose of this study was to characterize a cohort of adolescent and young adult patients with ARS with persistent os and compare their radiological and clinical outcomes to patients with acetabular dysplasia without an os. We reviewed a prospective database of patients undergoing periacetabular osteotomy (PAO) for symptomatic acetabular dysplasia between January 1999 and December 2021 to identify hips with preoperative os acetabuli, defined as a closed triradiate cartilage but persistence of a superolateral os acetabulum. A total of 14 hips in 12 patients with persistent os acetabuli (ARS cohort) were compared to 50 randomly selected ‘control’ hips without persistent os acetabuli. Preoperative and postoperative radiographs were measured for markers of dysplasia: lateral centre-edge angle, anterior centre-edge angle, acetabular inclination, and migration index. Union of the os was determined in patients with ≥ six months’ follow-up. Patient-reported outcome measures (PROMs) included the University of California, Los Angeles (UCLA) activity score and modified Harris Hip Score (mHHS, maximum score 80) completed at one year postoperatively.Aims
Methods
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic
The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods
The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.Aims
Methods
The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy. We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.Aims
Methods
The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom.Aims
Methods