It may not be possible to undertake revision total hip arthroplasty
(THA) in the presence of massive loss of acetabular bone stock using
standard cementless hemispherical acetabular components and metal
augments, as satisfactory stability cannot always be achieved. We
aimed to study the outcome using a reconstruction cage and a porous
metal augment in these patients. A total of 22 acetabular revisions in 19 patients were performed
using a combination of a reconstruction cage and porous metal augments.
The augments were used in place of structural allografts. The mean
age of the patients at the time of surgery was 70 years (27 to 85)
and the mean follow-up was 39 months (27 to 58). The mean number
of previous THAs was 1.9 (1 to 3). All patients had segmental defects
involving more than 50% of the acetabulum and seven hips had an
associated pelvic discontinuity. Aims
Patients and Methods
An uncemented hemispherical acetabular component
is the mainstay of acetabular revision and gives excellent long-term
results. Occasionally, the degree of acetabular bone loss means that a
hemispherical component will be unstable when sited in the correct
anatomical location or there is minimal bleeding host bone left
for biological fixation. On these occasions an alternative method
of reconstruction has to be used. A major column structural allograft has been shown to restore
the deficient bone stock to some degree, but it needs to be off-loaded
with a reconstruction cage to prevent collapse of the graft. The
use of porous metal augments is a promising method of overcoming
some of the problems associated with structural allograft. If the defect
is large, the augment needs to be protected by a cage to allow ingrowth
to occur. Cup-cage reconstruction is an effective method of treating
chronic pelvic discontinuity and large contained or uncontained
bone defects. This paper presents the indications, surgical techniques and
outcomes of various methods which use acetabular reconstruction
cages for revision total hip arthroplasty. Cite this article:
The conventional method for reconstructing acetabular
bone loss at revision surgery includes using structural bone allograft.
The disadvantages of this technique promoted the advent of metallic
but biocompatible porous implants to fill bone defects enhancing
initial and long-term stability of the acetabular component. This
paper presents the indications, surgical technique and the outcome
of using porous metal acetabular augments for reconstructing acetabular
defects. Cite this article:
In this retrospective study we evaluated the
proficiency of shelf autograft in the restoration of bone stock
as part of primary total hip replacement (THR) for hip dysplasia,
and in the results of revision arthroplasty after failure of the primary
arthroplasty. Of 146 dysplastic hips treated by THR and a shelf
graft, 43 were revised at an average of 156 months, 34 of which
were suitable for this study (seven hips were excluded because of
insufficient bone-stock data and two hips were excluded because
allograft was used in the primary THR). The acetabular bone stock
of the hips was assessed during revision surgery. The mean implant–bone
contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%)
at the time of the revision, which was a significant improvement
(p <
0.001). At primary THR all hips had had a segmental acetabular
defect >
30%, whereas only five (15%) had significant segmental
bone defects requiring structural support at the time of revision.
In 15 hips (44%) no bone graft or metal augments were used during
revision. A total of 30 hips were eligible for the survival study. At a
mean follow-up of 103 months (27 to 228), two aseptic and two septic
failures had occurred. Kaplan-Meier survival analysis of the revision
procedures demonstrated a ten-year survival rate of 93.3% (95% confidence
interval (CI) 78 to 107) with clinical or radiological failure as
the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for
non-revised cases at final follow-up. Our results indicate that the use of shelf autografts during
THR for dysplastic hips restores bone stock, contributing to the
favourable survival of the revision arthroplasty should the primary
procedure fail. Cite this article:
Trabecular metal (TM) augments are a relatively
new option for reconstructing segmental bone loss during acetabular
revision. We studied 34 failed hip replacements in 34 patients that
were revised between October 2003 and March 2010 using a TM acetabular
shell and one or two augments. The mean age of the patients at the
time of surgery was 69.3 years (46 to 86) and the mean follow-up
was 64.5 months (27 to 107). In all, 18 patients had a minor column
defect, 14 had a major column defect, and two were associated with
pelvic discontinuity. The hip centre of rotation was restored in
27 patients (79.4%). The Oxford hip score increased from a mean
of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to
47) at the final follow-up. There were three aseptic loosenings
of the construct, two of them in the patients with pelvic discontinuity.
One septic loosening also occurred in a patient who had previously
had an infected hip replacement. The augments remained stable in
two of the failed hips. Whenever there was a loose acetabular component
in contact with a stable augment, progressive metal debris shedding
was evident on the serial radiographs. Complications included another
deep infection treated without revision surgery. Good clinical and
radiological results can be expected for bone-deficient acetabula
treated by a TM cup and augment, but for pelvic discontinuities
this might not be a reliable option. Cite this article: