Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims. This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture. Methods. Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk. Results. During gait, varied sagittal positioning did not lead to excessive Von Mises stress or micromotion. However, under squat conditions, posterior positioning (-4 and -5 mm) resulted in stress exceeding 150 MPa at the femoral notch, indicating potential fracture risk. Conversely, +1 mm and 0 mm sagittal positions demonstrated minimal interface micromotion. Conclusion. Slightly anterior sagittal positioning (+1 mm) or neutral positioning (0 mm) effectively reduced stress concentration at the femoral notch and minimized interface micromotion. Thus, these positions are deemed suitable to decrease the risk of aseptic loosening and periprosthetic femoral fracture


Aims

There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation.

Methods

Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 82 - 90
7 Feb 2022
Eckert JA Bitsch RG Sonntag R Reiner T Schwarze M Jaeger S

Aims

The cemented Oxford unicompartmental knee arthroplasty (OUKA) features two variants: single and twin peg OUKA. The purpose of this study was to assess the stability of both variants in a worst-case scenario of bone defects and suboptimal cementation.

Methods

Single and twin pegs were implanted randomly allocated in 12 pairs of human fresh-frozen femora. We generated 5° bone defects at the posterior condyle. Relative movement was simulated using a servohydraulic pulser, and analyzed at 70°/115° knee flexion. Relative movement was surveyed at seven points of measurement on implant and bone, using an optic system.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 250 - 258
1 Apr 2021
Kwak D Bang S Lee S Park J Yoo J

Aims. There are concerns regarding initial stability and early periprosthetic fractures in cementless hip arthroplasty using short stems. This study aimed to investigate stress on the cortical bone around the stem and micromotions between the stem and cortical bone according to femoral stem length and positioning. Methods. In total, 12 femoral finite element models (FEMs) were constructed and tested in walking and stair-climbing. Femoral stems of three different lengths and two different positions were simulated, assuming press-fit fixation within each FEM. Stress on the cortical bone and micromotions between the stem and bone were measured in each condition. Results. Stress concentration was observed on the medial and lateral interfaces between the cortical bone and stem. With neutral stem insertion, mean stress over a region of interest was greater at the medial than lateral interface regardless of stem length, which increased as the stem shortened. Mean stress increased in the varus-inserted stems compared to the stems inserted neutrally, especially at the lateral interface in contact with the stem tip. The maximum stress was observed at the lateral interface in a varus-inserted short stem. All mean stresses were greater in stair-climbing condition than walking. Each micromotion was also greater in shorter stems and varus-inserted stems, and in stair-climbing condition. Conclusion. The stem should be inserted neutrally and stair-climbing movement should be avoided in the early postoperative period, in order to preserve early stability and reduce the possibility of thigh pain, especially when using a shorter stem. Cite this article: Bone Joint Res 2021;10(4):250–258


Aims

Mobile-bearing unicompartmental knee arthroplasty (UKA) with a flat tibial plateau has not performed well in the lateral compartment, leading to a high rate of dislocation. For this reason, the Domed Lateral UKA with a biconcave bearing was developed. However, medial and lateral tibial plateaus have asymmetric anatomical geometries, with a slightly dished medial and a convex lateral plateau. Therefore, the aim of this study was to evaluate the extent at which the normal knee kinematics were restored with different tibial insert designs using computational simulation.

Methods

We developed three different tibial inserts having flat, conforming, and anatomy-mimetic superior surfaces, whereas the inferior surface in all was designed to be concave to prevent dislocation. Kinematics from four male subjects and one female subject were compared under deep knee bend activity.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 489 - 494
1 Oct 2019
Klasan A Bäumlein M Dworschak P Bliemel C Neri T Schofer MD Heyse TJ

Objectives

Periprosthetic femoral fractures (PFFs) have a higher incidence with cementless stems. The highest incidence among various cementless stem types was observed with double-wedged stems. Short stems have been introduced as a bone-preserving alternative with a higher incidence of PFF in some studies. The purpose of this study was a direct load-to-failure comparison of a double-wedged cementless stem and a short cementless stem in a cadaveric fracture model.

Methods

Eight hips from four human cadaveric specimens (age mean 76 years (60 to 89)) and eight fourth-generation composite femurs were used. None of the cadaveric specimens had compromised quality (mean T value 0.4 (-1.0 to 5.7)). Each specimen from a pair randomly received either a double-wedged stem or a short stem. A materials testing machine was used for lateral load-to-failure test of up to a maximal load of 5000 N.