During the COVID-19 pandemic, drilling has been classified as an aerosol-generating procedure. However, there is limited evidence on the effects of bone drilling on splatter generation. Our aim was to quantify the effect of drilling on splatter generation within the orthopaedic operative setting. This study was performed using a Stryker System 7 dual rotating drill at full speed. Two fluid mediums (Videne (Solution 1) and Fluorescein (Solution 2)) were used to simulate drill splatter conditions. Drilling occurred at saw bone level (0 cm) and at different heights (20 cm, 50 cm, and 100 cm) above the target to simulate the surgeon ‘working arm length’, with and without using a drill guide. The furthest droplets were marked and the droplet displacement was measured in cm. A surgical microscope was used to detect microscopic droplets.Aims
Methods
To evaluate safety outcomes and patient satisfaction of the re-introduction of elective orthopaedic surgery on ‘green’ (non-COVID-19) sites during the COVID-19 pandemic. A strategy consisting of phased relaxation of clinical comorbidity criteria was developed. Patients from the orthopaedic waiting list were selected according to these criteria and observed recommended preoperative isolation protocols. Surgery was performed at green sites (two local private hospitals) under the COVID-19 NHS contract. The first 100 consecutive patients that met the Phase 1 criteria and underwent surgery were included. In hospital and postoperative complications with specific enquiry as to development of COVID-19 symptoms or need and outcome for COVID-19 testing at 14 days and six weeks was recorded. Patient satisfaction was surveyed at 14 days postoperatively.Aims
Methods
Aims. The worldwide COVID-19 pandemic is directly impacting the field of orthopaedic surgery and traumatology with postponed operations, changed status of planned elective surgeries and acute emergencies in patients with unknown infection status. To this point, Germany's COVID-19 infection numbers and death rate have been lower than those of many other nations. Methods. This article summarizes the current regimen used in the field of orthopaedics in Germany during the COVID-19 pandemic. Internal university clinic guidelines, latest research results, expert consensus, and clinical experiences were combined in this article guideline. Results. Every patient, with and without symptoms, should be screened for COVID-19 before hospital admission. Patients should be assigned to three groups (infection status unknown, confirmed, or negative). Patients with unknown infection status should be considered as infectious. Dependent of the infection status and acuity of the symptoms, patients are assigned to a COVID-19-free or affected zone of the hospital. Isolation, hand hygiene, and personal protective equipment is essential. Hospital personnel directly involved in the care of COVID-19 patients should be tested on a weekly basis independently of the presence of clinical symptoms, staff in the COVID-19-free zone on a biweekly basis. Class 1a operation rooms with
Elective operating was halted during the COVID-19 pandemic to increase the capacity to provide care to an unprecedented volume of critically unwell patients. During the pandemic, the orthopaedic department at the Aneurin Bevan University Health Board restructured the trauma service, relocating semi-urgent ambulatory trauma operating to the isolated clean elective centre (St. Woolos’ Hospital) from the main hospital receiving COVID-19 patients (Royal Gwent Hospital). This study presents our experience of providing semi-urgent trauma care in a COVID-19-free surgical unit as a safe way to treat trauma patients during the pandemic and a potential model for restarting an elective orthopaedic service. All patients undergoing surgery during the COVID-19 pandemic at the orthopaedic surgical unit (OSU) in St. Woolos’ Hospital from 23 March 2020 to 24 April 2020 were included. All patients that were operated on had a telephone follow-up two weeks after surgery to assess if they had experienced COVID-19 symptoms or had been tested for COVID-19. The nature of admission, operative details, and patient demographics were obtained from the health board’s electronic record. Staff were assessed for sickness, self-isolation, and COVID-19 status.Aims
Methods
In response to the COVID-19 pandemic, there was a rapidly implemented restructuring of UK healthcare services. The The Royal National Orthopaedic Hospital, Stanmore, became a central hub for the provision of trauma services for North Central/East London (NCEL) while providing a musculoskeletal tumour service for the south of England, the Midlands, and Wales and an urgent spinal service for London. This study reviews our paediatric practice over this period in order to share our experience and lessons learned. Our hospital admission pathways are described and the safety of surgical and interventional radiological procedures performed under general anaesthesia (GA) with regards to COVID-19 in a paediatric population are evaluated. All paediatric patients (≤ 16 years) treated in our institution during the six-week peak period of the pandemic were included. Prospective data for all paediatric trauma and urgent elective admissions and retrospective data for all sarcoma admissions were collected. Telephone interviews were conducted with all patients and families to assess COVID-19 related morbidity at 14 days post-discharge.Introduction
Methods
Elective surgery has been severely curtailed as a result of the COVID-19 pandemic. There is little evidence to guide surgeons in assessing what processes should be put in place to restart elective surgery safely in a time of endemic COVID-19 in the community. We used data from a stand-alone hospital admitting and operating on 91 trauma patients. All patients were screened on admission and 100% of patients have been followed-up after discharge to assess outcome.Aims
Methods
COVID-19 has changed the practice of orthopaedics across the globe. The medical workforce has dealt with this outbreak with varying strategies and adaptations, which are relevant to its field and to the region. As one of the ‘hotspots’ in the UK , the surgical branch of trauma and orthopaedics need strategies to adapt to the ever-changing landscape of COVID-19. Adapting to the crisis locally involved five operational elements: 1) triaging and workflow of orthopaedic patients; 2) operation theatre feasibility and functioning; 3) conservation of human resources and management of workforce in the department; 4) speciality training and progression; and 5) developing an exit strategy to resume elective work. Two hospitals under our trust were redesignated based on the treatment of COVID-19 patients. Registrar/consultant led telehealth reviews were carried out for early postoperative patients. Workflows for the management of outpatient care and inpatient care were created. We looked into the development of a dedicated operating space to perform the emergency orthopaedic surgeries without symptoms of COVID-19. Between March 23 and April 23, 2020, we have surgically treated 133 patients across both our hospitals in our trust. This mainly included hip fractures and fractures/infection affecting the hand.Aims
Methods
The COVID-19 pandemic presents an unprecedented burden on global healthcare systems, and existing infrastructures must adapt and evolve to meet the challenge. With health systems reliant on the health of their workforce, the importance of protection against disease transmission in healthcare workers (HCWs) is clear. This study collated responses from several countries, provided by clinicians familiar with practice in each location, to identify areas of best practice and policy so as to build consensus of those measures that might reduce the risk of transmission of COVID-19 to HCWs at work. A cross-sectional descriptive survey was designed with ten open and closed questions and sent to a representative sample. The sample was selected on a convenience basis of 27 senior surgeons, members of an international surgical society, who were all frontline workers in the COVID-19 pandemic. This study was reported according to the Standards for Reporting Qualitative Research (SRQR) checklist.Aims
Methods
During the pandemic of COVID-19, some patients with COVID-19 may need emergency surgeries. As spine surgeons, it is our responsibility to ensure appropriate treatment to the patients with COVID-19 and spinal diseases. A protocol for spinal surgery and related management on patients with COVID-19 has been reviewed. Patient preparation for emergency surgeries, indications, and contraindications of emergency surgeries, operating room preparation, infection control precautions and personal protective equipments (PPE), anesthesia management, intraoperative procedures, postoperative management, medical waste disposal, and surveillance of healthcare workers were reviewed. It should be safe for surgeons with PPE of protection level 2 to perform spinal surgeries on patients with COVID-19. Standardized and careful surgical procedures should be necessary to reduce the exposure to COVID-19.
The coronavirus disease 2019 (COVID-19) pandemic presents significant challenges to healthcare systems globally. Orthopaedic surgeons are at risk of contracting COVID-19 due to their close contact with patients in both outpatient and theatre environments. The aim of this review was to perform a literature review, including articles of other coronaviruses, to formulate guidelines for orthopaedic healthcare staff. A search of Medline, EMBASE, the Cochrane Library, World Health Organization (WHO), and Centers for Disease Control and Prevention (CDC) databases was performed encompassing a variety of terms including ‘coronavirus’, ‘covid-19’, ‘orthopaedic’, ‘personal protective environment’ and ‘PPE’. Online database searches identified 354 articles. Articles were included if they studied any of the other coronaviruses or if the basic science could potentially applied to COVID-19 (i.e. use of an inactivated virus with a similar diameter to COVID-19). Two reviewers independently identified and screened articles based on the titles and abstracts. 274 were subsequently excluded, with 80 full-text articles retrieved and assessed for eligibility. Of these, 66 were excluded as they compared personal protection equipment to no personal protection equipment or referred to prevention measures in the context of bacterial infections.Aim
Methods
The purpose of this article is to provide the
reader with a seven-step checklist that could help in minimising
the risk of PJI. The check list includes strategies that can be
implemented pre-operatively such as medical optimisation, and reduction
of the bioburden by effective skin preparation or actions taking
during surgery such as administration of timely and appropriate
antibiotics or blood conservation, and finally implementation of
post-operative protocols such as efforts to minimise wound drainage
and haematoma formation. Cite this article:
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
Fresh-frozen allograft bone is frequently used
in orthopaedic surgery. We investigated the incidence of allograft-related
infection and analysed the outcomes of recipients of bacterial culture-positive
allografts from our single-institute bone bank during bone transplantation.
The fresh-frozen allografts were harvested in a strict sterile environment
during total joint arthroplasty surgery and immediately stored in
a freezer at -78º to -68º C after packing. Between January 2007
and December 2012, 2024 patients received 2083 allografts with a
minimum of 12 months of follow-up. The overall allograft-associated
infection rate was 1.2% (24/2024). Swab cultures of 2083 allografts
taken before implantation revealed 21 (1.0%) positive findings.
The 21 recipients were given various antibiotics at the individual
orthopaedic surgeon’s discretion. At the latest follow-up, none
of these 21 recipients displayed clinical signs of infection following
treatment. Based on these findings, we conclude that an incidental positive
culture finding for allografts does not correlate with subsequent
surgical site infection. Additional prolonged post-operative antibiotic
therapy may not be necessary for recipients of fresh-frozen bone
allograft with positive culture findings. Cite this article:
The aim of this study was to re-assess whether the use of a ‘one-knife technique’ can be considered as safe as the alternative practice of using separate skin and inside knives for elective orthopaedic surgery. A total of 609 knife blades from 203 elective orthopaedic operations, with equal numbers of skin, inside and control blades, were cultured using direct and enrichment media. We found 31 skin blades (15.3%), 22 inside blades (10.8%), and 13 control blades (6.4%) gave bacterial growth. Of the 31 contaminated skin blades only three (9.7%) had growth of the same organism as found on the corresponding inside blade. It is not known whether contamination of deeper layers in the remaining 90% was prevented by changing the knife after the skin incision. The organisms cultured were predominantly coagulase-negative staphylococci and proprionibacterium species; both are known to be the major culprits in peri-prosthetic infection. Our study suggests that the use of separate skin and inside knives should be maintained as good medical practice, since the cost of a single deep infection in human and financial terms can be considerable.
The Department of Health and the Public Health Laboratory Service established the Nosocomial Infection National Surveillance Scheme in order to standardise the collection of information about infections acquired in hospital in the United Kingdom and provide national data with which hospitals could measure their own performance. The definition of superficial incisional infection (skin and subcutaneous tissue), set by the Center for Disease Control (CDC), should meet at least one of the defined criteria which would confirm the diagnosis and determine the need for specific treatment. We have assessed the interobserver reliability of the criteria for superficial incisional infection set by the CDC in our current practice. The incisional site of 50 patients who had an elective primary arthroplasty of the hip or knee was evaluated independently by two orthopaedic clinical research fellows and two orthopaedic ward sisters for the presence or absence of surgical-site infection. Interobserver reliability was assessed by comparison of the criteria for wound infection used by the four observers using kappa reliability coefficients. Our study demonstrated that some of the components of the current CDC criteria were unreliable and we recommend their revision.
We conducted a randomised, controlled trial to determine whether changing gloves at specified intervals can reduce the incidence of glove perforation and contamination in total hip arthroplasty. A total of 50 patients were included in the study. In the study group (25 patients), gloves were changed at 20-minute intervals or prior to cementation. In the control group (25 patients), gloves were changed prior to cementation. In addition, gloves were changed in both groups whenever there was a visible puncture. Only outer gloves were investigated. Contamination was tested by impression of gloved fingers on blood agar and culture plates were subsequently incubated at 37°C for 48 hours. The number of colonies and types of organisms were recorded. Glove perforation was assessed using the water test. The incidence of perforation and contamination was significantly lower in the study group compared with the control group. Changing gloves at regular intervals is an effective way to decrease the incidence of glove perforation and bacterial contamination during total hip arthroplasty.