Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.Aims
Methods
CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.Aims
Methods
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Aims. Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. Methods. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in
Magnetically controlled growing rods (MCGRs) allow non-invasive
correction of the spinal deformity in the treatment of early-onset
scoliosis. Conventional growing rod systems (CGRS) need repeated
surgical distractions: these are associated with the effect of the
‘law of diminishing returns’. The primary aim of this study was to quantify this effect in
MCGRs over sequential distractions. A total of 35 patients with a maximum follow-up of 57 months
were included in the study. There were 17 boys and 18 girls with
a mean age of 7.4 years (2 to 14). True Distraction (TD) was determined
by measuring the expansion gap on fluoroscopy. This was compared
with Intended Distraction (ID) and expressed as the ‘T/I’ ratio.
The T/I ratio and the Cobb angle were calculated at several time
points during follow-up.Aims
Patients and Methods
The aim of this study was to determine whether the sequential
application of povidone iodine-alcohol (PVI) followed by chlorhexidine
gluconate-alcohol (CHG) would reduce surgical wound contamination
to a greater extent than PVI applied twice in patients undergoing
spinal surgery. A single-centre, interventional, two arm, parallel group randomised
controlled trial was undertaken, involving 407 patients who underwent
elective spinal surgery. For 203 patients, the skin was disinfected before surgery using
PVI (10% [w/w (1% w/w available iodine)] in 95% industrial denatured
alcohol, povidone iodine; Videne Alcoholic Tincture) twice, and
for 204 patients using PVI once followed by CHG (2% [w/v] chlorhexidine
gluconate in 70% [v/v] isopropyl alcohol; Chloraprep with tint).
The primary outcome measure was contamination of the wound determined
by aerobic and anaerobic bacterial growth from samples taken after
disinfection.Aims
Patients and Methods
We aimed to retrospectively assess the accuracy and safety of
CT navigated pedicle screws and to compare accuracy in the cervical
and thoracic spine (C2-T8) with (COMB) and without (POST) prior
anterior surgery (anterior cervical discectomy or corpectomy and
fusion with ventral plating: ACDF/ACCF). A total of 592 pedicle screws, which were used in 107 consecutively
operated patients (210 COMB, 382 POST), were analysed. The accuracy
of positioning was determined according to the classification of
Gertzbein and Robbins on post-operative CT scans.Aims
Patients and Methods
Many studies have investigated the kinematics of the lumbar spine and the morphological features of the lumbar discs. However, the segment-dependent immediate changes of the lumbar intervertebral space height during flexion-extension motion are still unclear. This study examined the changes of intervertebral space height during flexion-extension motion of lumbar specimens. First, we validated the accuracy and repeatability of a custom-made mechanical loading equipment set-up. Eight lumbar specimens underwent CT scanning in flexion, neural, and extension positions by using the equipment set-up. The changes in the disc height and distance between adjacent two pedicle screw entry points (DASEP) of the posterior approach at different lumbar levels (L3/4, L4/5 and L5/S1) were examined on three-dimensional lumbar models, which were reconstructed from the CT images.Objectives
Methods
Loosening of pedicle screws is a major complication of posterior
spinal stabilisation, especially in the osteoporotic spine. Our
aim was to evaluate the effect of cement augmentation compared with
extended dorsal instrumentation on the stability of posterior spinal
fixation. A total of 12 osteoporotic human cadaveric spines (T11-L3) were
randomised by bone mineral density into two groups and instrumented
with pedicle screws: group I (SHORT) separated T12 or L2 and group
II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were
augmented with cement unilaterally in each vertebra. Fatigue testing
was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz)
load with stepwise increasing peak force.Aims
Materials and Methods
To clarify the asymmetrical ossification of the epiphyseal ring
between the convex and concave sides in patients with adolescent
idiopathic scoliosis (AIS). A total of 29 female patients (mean age, 14.4 years; 11 to 18)
who underwent corrective surgery for AIS (Lenke type 1 or 2) were
included in our study. In all, 349 vertebrae including 68 apical
vertebrae and 87 end vertebrae in the main thoracic (MT) curve and
thoracolumbar/lumbar (TL/L) curve were analysed. Coronal sections
(anterior, middle and posterior) of the vertebral bodies were reconstructed
from pre-operative CT scans (320-row detector; slice thickness,
0.5 mm) and the appearances of the ossification centre in the epiphyseal
ring at four corners were evaluated in three groups; all vertebrae
excluding end vertebrae, apical vertebrae and end vertebrae. The appearance
rates of the ossification centre at the concave and convex sides
were calculated and compared.Aims
Patients and Methods
Mesenchymal stem-cell based therapies have been
proposed as novel treatments for intervertebral disc degeneration,
a prevalent and disabling condition associated with back pain. The
development of these treatment strategies, however, has been hindered
by the incomplete understanding of the human nucleus pulposus phenotype
and by an inaccurate interpretation and translation of animal to
human research. This review summarises recent work characterising
the nucleus pulposus phenotype in different animal models and in
humans and integrates their findings with the anatomical and physiological
differences between these species. Understanding this phenotype
is paramount to guarantee that implanted cells restore the native
functions of the intervertebral disc. Cite this article:
No previous studies have examined the physical
characteristics of patients with cauda equina syndrome (CES). We compared
the anthropometric features of patients who developed CES after
a disc prolapse with those who did not but who had symptoms that
required elective surgery. We recorded the age, gender, height,
weight and body mass index (BMI) of 92 consecutive patients who
underwent elective lumbar discectomy and 40 consecutive patients who
underwent discectomy for CES. On univariate analysis, the mean BMI
of the elective discectomy cohort (26.5 kg/m2 (16.6 to
41.7) was very similar to that of the age-matched national mean
(27.6 kg/m2, p = 1.0). However, the mean BMI of the CES
cohort (31.1 kg/m2 (21.0 to 54.9)) was significantly
higher than both that of the elective group (p <
0.001) and the
age-matched national mean (p <
0.001). A similar pattern was
seen with the weight of the groups. Multivariate logistic regression
analysis was performed, adjusted for age, gender, height, weight
and BMI. Increasing BMI and weight were strongly associated with
an increased risk of CES (odds ratio (OR) 1.17, p <
0.001; and
OR 1.06, p <
0.001, respectively). However, increasing height
was linked with a reduced risk of CES (OR 0.9, p <
0.01). The
odds of developing CES were 3.7 times higher (95% confidence interval
(CI) 1.2 to 7.8, p = 0.016) in the overweight and obese (as defined
by the World Health Organization: BMI ≥ 25 kg/m2) than
in those of ideal weight. Those with very large discs (obstructing
>
75% of the spinal canal) had a larger BMI than those with small
discs (obstructing <
25% of the canal; p <
0.01). We therefore
conclude that increasing BMI is associated with CES.
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include biological therapies and novel surgical techniques (such
as total disc replacement), although many of these are still in
their experimental phase. Central to developing further methods
of treatment is the need for effective ways in which to assess patients
and measure their outcomes. However, significant difficulties remain
and it is therefore an appropriate time to be further investigating
the scientific basis of and treatment of LBP.
In patients with osteoporosis there is always
a strong possibility that pedicle screws will loosen. This makes
it difficult to select the appropriate osteoporotic patient for
a spinal fusion. The purpose of this study was to determine the
correlation between bone mineral density (BMD) and the magnitude
of torque required to insert a pedicle screw. To accomplish this,
181 patients with degenerative disease of the lumbar spine were
studied prospectively. Each underwent dual-energy x-ray absorptiometry
(DEXA) and intra-operative measurement of the torque required to
insert each pedicle screw. The levels of torque generated in patients
with osteoporosis and osteopenia were significantly lower than those
achieved in normal patients. Positive correlations were observed between
BMD and T-value at the instrumented lumbar vertebrae, mean BMD and
mean T-value of the lumbar vertebrae, and mean BMD and mean T-value
of the proximal femur. The predictive torque (Nm) generated during pedicle
screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar
vertebrae)], as measured by linear regression analysis. The positive
correlation between BMD and the maximum torque required to insert
a pedicle screw suggests that pre-operative assessment of BMD may
be useful in determining the ultimate strength of fixation of a
device, as well as the number of levels that need to be fixed with
pedicle screws in patients who are suspected of having osteoporosis.
Between January 1990 and December 2000 we carried out 226 SB Charité III disc replacements for lumbar disc degeneration in 160 patients. They were reviewed at a mean follow-up of 79 months (31 to 161) to determine the clinical and radiological outcome. The clinical results were collected by an independent observer, who was not involved in patient selection, treatment or follow-up, using a combination of outcome measures, including the Oswestry Disability Index. Pain was recorded using a visual analogue score, and the most recent radiographs were reviewed. Survival of the device was analysed by the Kaplan-Meier method and showed a cumulative survival of 35% at 156 months when radiological failure was taken as the endpoint. The mean improvement in the Oswestry disability index scores after disc replacement was 14% (6% to 21%) and the mean improvement in the pain score was 1.6 (0.46 to 2.73), both falling below the clinically significant threshold. Removal of the implant was required in 12 patients, four because of implant failure. These poor results indicate that further use of this implant is not justified.
We studied 52 patients, each with a lumbosacral transitional vertebra. Using MRI we found that the lumbar discs immediately above the transitional vertebra were significantly more degenerative and those between the transitional vertebrae and the sacrum were significantly less degenerative compared with discs at other levels. We also performed an anatomical study using 70 cadavers. We found that the iliolumbar ligament at the level immediately above the transitional vertebra was thinner and weaker than it was in cadavers without a lumbosacral transitional vertebra. Instability of the vertebral segment above the transitional vertebra because of a weak iliolumbar ligament could lead to subsequent disc degeneration which may occur earlier than at other disc levels. Some stability between the transitional vertebra and the sacrum could be preserved by the formation of either an articulation or by bony union between the vertebra and the sacrum through its transverse process. This may protect the disc from further degeneration in the long term.
There have been very few reports in the literature of gout and pseudogout of the spine. We describe six patients who presented with acute sciatica attributable to spinal stenosis with cyst formation in the facet joints. Cytopathological studies confirmed the diagnosis of crystal arthropathy in each case. Specific formation of a synovial cyst was identified pre-operatively by MRI in five patients. In the sixth, the diagnosis was made incidentally during decompressive surgery. Surgical decompression alone was undertaken in four patients. In one with an associated degenerative spondylolisthesis, an additional intertransverse fusion was performed. Another patient had previously undergone a spinal fusion adjacent to the involved spinal segment, and spinal stabilisation was undertaken as well as a decompression. In addition to standard histological examination material was sent for examination under polarised light which revealed deposition of urate or calcium pyrophosphate dihydrate crystals in all cases. It is not possible to diagnose gout and pseudogout of the spine by standard examination of a fixed specimen. However, examining dry specimens under polarised light suggests that crystal arthropathy is a significant aetiological factor in the development of symptomatic spinal stenosis associated with cyst formation in a facet joint.