Advertisement for orthosearch.org.uk
Results 1 - 20 of 58
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 59 - 65
1 May 2024
Liu WKT Cheung A Fu H Chan PK Chiu KY

Aims. Isolated acetabular liner exchange with a highly crosslinked polyethylene (HXLPE) component is an option to address polyethylene wear and osteolysis following total hip arthroplasty (THA) in the presence of a well-fixed acetabular shell. The liner can be fixed either with the original locking mechanism or by being cemented within the acetabular component. Whether the method used for fixation of the HXLPE liner has any bearing on the long-term outcomes is still unclear. Methods. Data were retrieved for all patients who underwent isolated acetabular component liner exchange surgery with a HXLPE component in our institute between August 2000 and January 2015. Patients were classified according to the fixation method used (original locking mechanism (n = 36) or cemented (n = 50)). Survival and revision rates were compared. A total of 86 revisions were performed and the mean duration of follow-up was 13 years. Results. A total of 20 patients (23.3%) had complications, with dislocation alone being the most common (8.1%; 7/86). Ten patients (11.6%) required re-revision surgery. Cementing the HXLPE liner (8.0%; 4/50) had a higher incidence of re-revision due to acetabular component liner-related complications than using the original locking mechanism (0%; 0/36; p = 0.082). Fixation using the original locking mechanism was associated with re-revision due to acetabular component loosening (8.3%; 3/36), compared to cementing (0%; 0/50; p = 0.038). Overall estimated mean survival was 19.2 years. There was no significant difference in the re-revision rate between the original locking mechanism (11.1%; 4/36) and cementing (12.0%; 6/50; p = 0.899). Using Kaplan-Meier survival analysis, the revision-free survival of HXLPE fixed with the original locking mechanism and cementing was 94.1% and 93.2%, respectively, at ten years, and 84.7% and 81.3%, respectively, at 20 years (p = 0.840). Conclusion. The re-revision rate and the revision-free survival following acetabular component liner exchange revision surgery using the HXLPE liner were not influenced by the fixation technique used. Both techniques were associated with good survival at a mean follow-up of 13 years. Careful patient selection is necessary for isolated acetabular component liner exchange revision surgery in order to achieve the best outcomes. Cite this article: Bone Joint J 2024;106-B(5 Supple B):59–65


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 1 - 2
1 Mar 2024
Haddad FS Berry DJ


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.


Bone & Joint 360
Vol. 12, Issue 4 | Pages 44 - 46
1 Aug 2023
Burden EG Whitehouse MR Evans JT


Aims. The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). Methods. A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints. Results. There was no clinically relevant difference in terms of tibial component migration, insert wear, and PROMs between the HXLPE and PE groups. The mean difference in tibial component migration (maximal total point migration (MTPM)) was 0.02 mm (95% confidence interval (CI) -0.07 to 0.11), which is below the value of 0.2 mm considered to be clinically relevant. Wear after five years for HXLPE was 0.16 mm (95% CI 0.05 to 0.27), and for PE was 0.23 mm (95% CI 0.12 to 0.35). The mean difference in wear rate was 0.01 mm/year (95% CI -0.02 to 0.05) in favour of the HXLPE group. Wear is mainly present on the medial side of the insert. Conclusion. There is no clinically relevant difference in tibial component migration and insert wear for up to five years between the HXLPE conventional PE inserts. For the implant studied, the potential advantages of a HXLPE insert remain to be proven under clinical conditions at longer-term follow-up. Cite this article: Bone Joint J 2023;105-B(5):518–525


Bone & Joint 360
Vol. 11, Issue 1 | Pages 17 - 20
1 Feb 2022


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1206 - 1214
1 Jul 2021
Tsikandylakis G Mortensen KRL Gromov K Mohaddes M Malchau H Troelsen A

Aims

We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty.

Methods

In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes.


Bone & Joint 360
Vol. 10, Issue 3 | Pages 8 - 10
1 Jun 2021


Bone & Joint Open
Vol. 2, Issue 5 | Pages 278 - 292
3 May 2021
Miyamoto S Iida S Suzuki C Nakatani T Kawarai Y Nakamura J Orita S Ohtori S

Aims

The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA.

Methods

A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 872 - 880
1 May 2021
Young PS Macarico DT Silverwood RK Farhan-Alanie OM Mohammed A Periasamy K Nicol A Meek RMD

Aims

Uncemented metal acetabular components show good osseointegration, but material stiffness causes stress shielding and retroacetabular bone loss. Cemented monoblock polyethylene components load more physiologically; however, the cement bone interface can suffer fibrous encapsulation and loosening. It was hypothesized that an uncemented titanium-sintered monoblock polyethylene component may offer the optimum combination of osseointegration and anatomical loading.

Methods

A total of 38 patients were prospectively enrolled and received an uncemented monoblock polyethylene acetabular (pressfit) component. This single cohort was then retrospectively compared with previously reported randomized cohorts of cemented monoblock (cemented) and trabecular metal (trabecular) acetabular implants. The primary outcome measure was periprosthetic bone density using dual-energy x-ray absorptiometry over two years. Secondary outcomes included radiological and clinical analysis.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 22 - 30
1 Jan 2021
Clement ND Gaston P Bell A Simpson P Macpherson G Hamilton DF Patton JT

Aims

The primary aim of this study was to compare the hip-specific functional outcome of robotic assisted total hip arthroplasty (rTHA) with manual total hip arthroplasty (mTHA) in patients with osteoarthritis (OA). Secondary aims were to compare general health improvement, patient satisfaction, and radiological component position and restoration of leg length between rTHA and mTHA.

Methods

A total of 40 patients undergoing rTHA were propensity score matched to 80 patients undergoing mTHA for OA. Patients were matched for age, sex, and preoperative function. The Oxford Hip Score (OHS), Forgotten Joint Score (FJS), and EuroQol five-dimension questionnaire (EQ-5D) were collected pre- and postoperatively (mean 10 months (SD 2.2) in rTHA group and 12 months (SD 0.3) in mTHA group). In addition, patient satisfaction was collected postoperatively. Component accuracy was assessed using Lewinnek and Callanan safe zones, and restoration of leg length were assessed radiologically.


Aims. Vitamin E-infused highly crosslinked polyethylene (VEPE) has been introduced into total hip arthroplasty (THA) with the aim of further improving the wear characteristics of moderately and highly crosslinked polyethylenes (ModXLPE and HXLPE). There are few studies analyzing the outcomes of vitamin E-infused components in cemented arthroplasty, though early acetabular component migration has been reported. The aim of this study was to measure five-year polyethylene wear and acetabular component stability of a cemented VEPE acetabular component compared with a ModXLPE cemented acetabular component. Methods. In a prospective randomized controlled trial (RCT), we assessed polyethylene wear and acetabular component stability (primary outcome) with radiostereometric analysis (RSA) in 68 patients with reverse hybrid THA at five years follow-up. Patients were randomized to either a VEPE or a ModXLPE cemented acetabular component. Results. Mean polyethylene wear in the proximal direction was 0.17 mm (SD 0.15) for the VEPE group and 0.20 mm (SD 0.09) for the ModXLPE group (p = 0.005) at five years. Annual proximal wear rates were 0.03 mm/year (VEPE) and 0.04 mm/year (ModXLPE). Total 3D wear was 0.21 mm (SD 0.26) and 0.23 mm (SD 0.10) for the VEPE and ModXLPE groups, respectively (p = 0.009). Total 3D cup translation was 0.72 mm (SD 0.70) (VEPE) and 0.50 mm (SD 0.44) (ModXLPE) (p = 0.409). Conclusion. At five years, there was less polyethylene wear in the VEPE group than in the ModXLPE group. Both VEPE and ModXLPE cemented components showed low annual wear rates. Component stability was similar in the two groups and remained constant up to five years. Whether these results will equate to a lower long-term revision rate is still unknown. Cite this article: Bone Joint J 2020;102-B(12):1646–1653


Aims

To investigate the effect of polyethylene manufacturing characteristics and irradiation dose on the survival of cemented and reverse hybrid total hip arthroplasties (THAs).

Methods

In this registry study, data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man (NJR) were linked with manufacturing data supplied by manufacturers. The primary endpoint was revision of any component. Cox proportional hazard regression was a primary analytic approach adjusting for competing risk of death, patient characteristics, head composition, and stem fixation.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 3 - 10
1 Jul 2020
Sosa BR Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom M Yang X

Aims

Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment.

Methods

The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 129 - 137
1 Jun 2020
Knowlton CB Lundberg HJ Wimmer MA Jacobs JJ

Aims

A retrospective longitudinal study was conducted to compare directly volumetric wear of retrieved polyethylene inserts to predicted volumetric wear modelled from individual gait mechanics of total knee arthroplasty (TKA) patients.

Methods

In total, 11 retrieved polyethylene tibial inserts were matched with gait analysis testing performed on those patients. Volumetric wear on the articular surfaces was measured using a laser coordinate measure machine and autonomous reconstruction. Knee kinematics and kinetics from individual gait trials drove computational models to calculate medial and lateral tibiofemoral contact paths and forces. Sliding distance along the contact path, normal forces and implantation time were used as inputs to Archard’s equation of wear to predict volumetric wear from gait mechanics. Measured and modelled wear were compared for each component.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 401 - 402
1 Apr 2020
Chang JS Haddad FS


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 170 - 176
1 Feb 2020
Bernthal NM Burke ZDC Hegde V Upfill-Brown A Chen CJ Hwang R Eckardt JJ

Aims

We aimed to examine the long-term mechanical survivorship, describe the modes of all-cause failure, and identify risk factors for mechanical failure of all-polyethylene tibial components in endoprosthetic reconstruction.

Methods

This is a retrospective database review of consecutive endoprosthetic reconstructions performed for oncological indications between 1980 and 2019. Patients with all-polyethylene tibial components were isolated and analyzed for revision for mechanical failure. Outcomes included survival of the all-polyethylene tibial component, revision surgery categorized according to the Henderson Failure Mode Classification, and complications and functional outcome, as assessed by the Musculoskeletal Tumor Society (MSTS) score at the final follow-up.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked UHMWPE inserts was less than half that of standard UHMWPE inserts. Conclusion. Our results showed that increasing conformity may not be the sole predictor of wear performance; highly crosslinked mobile-bearing polyethylene inserts can also provide improvement in wear performance. These results provide improvements in design and materials to reduce wear in mobile-bearing UKA. Cite this article: Bone Joint Res 2019;8:563–569


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives

The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process.

Methods

A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.