Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 840 - 843
15 Dec 2021
Al-Hourani K Tsang SJ Simpson AHRW


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims. The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Methods. Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted. Results. A total of 30 studies were included, of which six studies used rats and 24 studies used mice. Osteoporosis or bone loss was induced in 14 studies. Interventions included ten with probiotics, three with prebiotics, nine with antibiotics, two with short-chain fatty acid (SCFA), six with vitamins and proteins, two with traditional Chinese medicine (TCM), and one with neuropeptide Y1R antagonist. In general, probiotics, prebiotics, nutritional interventions, and TCM were found to reverse the GM dysbiosis and rescue bone loss. Conclusion. Despite the positive therapeutic effect of probiotics, prebiotics, and nutritional or pharmaceutical interventions on osteoporosis, there is still a critical knowledge gap regarding the role of GM in rescuing bone loss and its related pathways. Cite this article: Bone Joint Res 2021;10(1):51–59