The Bracing Adolescent Idiopathic Scoliosis (BASIS) study is a randomized controlled non-inferiority pragmatic trial of ‘full-time bracing’ (FTB) compared to ‘night-time bracing’ (NTB) for the treatment of adolescent idiopathic scoliosis (AIS). We anticipated that recruiting patients to BASIS would be challenging, as it is a paediatric trial comparing two markedly different bracing pathways. No previous studies have compared the experiences of AIS patients treated with FTB to those treated with NTB. This qualitative study was embedded in BASIS to explore families’ perspectives of BASIS, to inform trial communication, and to identify strategies to support patients treated in a brace. Semi-structured interviews were conducted with parents (n = 26) and young people (n = 21) who had been invited to participate in BASIS at ten of the 22 UK paediatric spine services in hospitals recruiting to BASIS. Audio-recorded interviews were transcribed and analyzed thematically.Aims
Methods
In our previous research, we have found that melatonin (MEL) affects the osteoporotic process. By balancing bone remoulding, autophagy is involved in age-related bone loss. However, as a regulator of autophagy, whether MEL influences senile osteoporosis via regulating autophagy remains unclear. Cellular, radiological, and histopathological evaluations were performed on 36 16-month-old male C57BL6/L mice or aged bone marrow-derived mesenchymal stem cells. A MEL-gelatin methacrylamide system was constructed to aid osteoporotic fracture healing.Aims
Methods
Autologous bone graft (ABG) is considered the ‘gold standard’ among graft materials for bone regeneration. However, complications including limited availability, donor site morbidity, and deterioration of regenerative capacity over time have been reported. P-15 is a synthetic peptide that mimics the cell binding domain of Type-I collagen. This peptide stimulates new bone formation by enhancing osteogenic cell attachment, proliferation, and differentiation. The objective of this study was to conduct a systematic literature review to determine the clinical efficacy and safety of P-15 peptide in bone regeneration throughout the skeletal system. PubMed, Embase, Web of Science, and Cochrane Library were searched for relevant articles on 13 May 2023. The systematic review was reported according to the PRISMA guidelines. Two reviewers independently screened and assessed the identified articles. Quality assessment was conducted using the methodological index for non-randomized studies and the risk of bias assessment tool for randomized controlled trials.Aims
Methods
The February 2025 Hip & Pelvis Roundup360 looks at: Postoperative periprosthetic femoral fractures after hip arthroplasty: quantifying the other half of the picture; Hip arthroscopy in patients with borderline dysplasia: how do we know when it will not work?; The morbidly obese patient remains a challenge for arthroplasty surgeons; Unexpected positive cultures in aseptic revision hip and knee arthroplasty: does it make a difference?; Failed spinal anaesthesia in hip and knee arthroplasty surgery; Clinical failure of femoral neck fracture is associated with varus necks; Navigating the angles: how variations in femoral and acetabular versions influence hip pain and treatment; High-tech or hands-on? Similar outcomes in direct anterior total hip arthroplasty.
In this study, we aimed to evaluate incidence trends and potential risk factors associated with Perthes’ disease in Denmark, using publicly available data. Our population-based case-control study used data from the Danish National Patient Register and Danish Civil Registration System, accessed through the publicly available Danish Biobank Register, to identify 1,924,292 infants born between 1985 and 2016. We estimated age-specific incidence rates for four birth periods of equal duration (1985 to 1992, 1993 to 2000, 2001 to 2008, and 2009 to 2016) and investigated associations with perinatal conditions, congenital malformations, coagulation defects, autism spectrum disorders (ASD), and attention deficit hyperactivity disorders (ADHD).Aims
Methods
The February 2025 Research Roundup360 looks at: Walk your way to longer life: quantifying physical activity’s role in extending longevity; Is information about musculoskeletal malignancies from large language models or web resources at a suitable reading level for patients?; Contemporary surgical management of osteosarcoma and Ewing’s sarcoma; L-arginine and tendon healing; What you can’t hear might not stress you out as much.
The February 2025 Children’s orthopaedics Roundup360 looks at: Are antibiotics enough for the initial management of paediatric Gustilo-Anderson type I upper limb open fractures?; Advanced imaging for tibial tubercle fractures; Spinal fusion improves quality of life in cerebral palsy scoliosis: a multicentre study; Hip displacement after triradiate closure in ambulatory cerebral palsy; Telehealth validation for adolescent idiopathic scoliosis: comparable clinical measurements enhance access to care; Long-term prognostic markers for residual dysplasia in developmental dysplasia of the hip after closed reduction; Open versus closed reduction for paediatric lateral humeral condyle fractures: better outcomes with closed techniques; Delayed diagnosis of paediatric septic hip leads to poor outcomes and doubling of healthcare costs.
The aims of this study, using a porcine model of multiple trauma, were to investigate the expression of microRNAs at the fracture site, in the fracture haematoma (fxH) and in the fractured bone, compared with a remote unfractured long bone, to characterize the patterns of expression of circulating microRNAs in plasma, and identify and validate messenger RNA (mRNA) targets of the microRNAs. Two multiple trauma treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). For this study, fxH, fractured bone, unfractured control bone, plasma, lung, and liver samples were harvested. MicroRNAs were analyzed using quantitative real-time polymerase chain reaction arrays, and the identified mRNA targets were validated in vivo in the bone, fxH, lung, and liver tissue.Aims
Methods
Aims. The development of lumbar lordosis has been traditionally examined using angular measurements of the spine to reflect its shape. While studies agree regarding the increase in the angles during
Magnesium ions (Mg2+) play an important role in promoting cartilage repair in cartilage lesions. However, no research has focused on the role of Mg2+ combined with microfracture (MFX) in hyaline-like cartilage repair mediated by cartilage injury. This study aimed to investigate the beneficial effects of the combination of MFX and Mg2+ in cartilage repair. A total of 60 rabbits were classified into five groups (n = 12 each): sham, MFX, and three different doses of Mg2+ treatment groups (0.05, 0.5, and 5 mol/L). Bone cartilage defects were created in the trochlear groove cartilage of rabbits. MFX surgery was performed after osteochondral defects. Mg2+ was injected into knee joints immediately and two and four weeks after surgery. At six and 12 weeks after surgery, the rabbits were killed. Cartilage damage was detected by gross observation, micro-CT, and histological analysis. The expression levels of related genes were detected by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR).Aims
Methods
The aim of this study was to evaluate the radiological outcome of patients with large bone defects in the femur and tibia who were treated according to the guidelines of the diamond concept in our department (Centre for Orthopedics, Trauma Surgery, and Paraplegiology). The following retrospective, descriptive analysis consists of patients treated in our department between January 2010 and December 2021. In total, 628 patients were registered, of whom 108 presented with a large-sized defect (≥ 5 cm). A total of 70 patients met the inclusion criteria. The primary endpoint was radiological consolidation of nonunions after one and two years via a modified Lane-Sandhu Score, including only radiological parameters.Aims
Methods
The aims of this study were to develop an automatic system capable of calculating four radiological measurements used in the diagnosis and monitoring of cerebral palsy (CP)-related hip disease, and to demonstrate that these measurements are sufficiently accurate to be used in clinical practice. We developed a machine-learning system to automatically measure Reimer’s migration percentage (RMP), acetabular index (ACI), head shaft angle (HSA), and neck shaft angle (NSA). The system automatically locates points around the femoral head and acetabulum on pelvic radiographs, and uses these to calculate measurements. The system was evaluated on 1,650 pelvic radiographs of children with CP (682 females and 968 males, mean age 8.3 years (SD 4.5)). Each radiograph was manually measured by five clinical experts. Agreement between the manual clinical measurements and the automatic system was assessed by mean absolute deviation (MAD) from the mean manual measurement, type 1 and type 2 intraclass correlation coefficients (ICCs), and a linear mixed-effects model (LMM) for assessing bias.Aims
Methods
The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap.Aims
Methods
The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments.Aims
Methods
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
In the treatment of basal thumb osteoarthritis (OA), intra-articular autologous fat transplantation has become of great interest within recent years as a minimally invasive and effective alternative to surgical intervention with regard to pain reduction. This study aims to assess its long-term effectiveness. Patients diagnosed with stage one to three OA received a single intra-articular autologous fat transplantation. Fat tissue was harvested from the abdomen and injected into the trapeziometacarpal (TMC) joint under radiological guidance, followed by one week of immobilization. Patients with a minimum three-year post-procedure period were assessed for pain level (numerical rating scale), quality of life (Mental Health Quotient (MHQ)), the abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH)), and grip and pinch strength, as well as their overall impression of the treatment. Wilcoxon tests compared data from pre-intervention, and at one and three years post-intervention.Aims
Methods
Limb salvage surgery (LSS) is the primary treatment option for primary bone malignancy. It involves the removal of bone and tissue, followed by reconstruction with endoprosthetic replacements (EPRs) to prevent amputation. Trabecular metal (TM) collars have been developed to encourage bone ingrowth (osseointegration (OI)) into EPRs. The primary aim of this study was to assess whether OI occurs when TM collars are used in EPRs for tumour. A total of 124 patients from July 2010 to August 2021 who underwent an EPR for tumour under the West of Scotland orthopaedic oncology team were identified. Overall, 81 patients (65%) met the inclusion criteria, and two consultants independently analyzed radiographs at three and 12 months, as well as the last radiograph, using a modified version of the Stanford Radiological Assessment System.Aims
Methods