Periprosthetic joint infection (PJI) is a challenging complication of any arthroplasty procedure. We reviewed our use of static antibiotic-loaded cement spacers (ABLCSs) for staged management of PJI where segmental bone loss, ligamentous instability, or soft-tissue defects necessitate a static construct. We reviewed factors contributing to their failure and techniques to avoid these complications when using ABLCSs in this context. A retrospective analysis was conducted of 94 patients undergoing first-stage revision of an infected knee prosthesis between September 2007 and January 2020 at a single institution. Radiographs and clinical records were used to assess and classify the incidence and causes of static spacer failure. Of the 94 cases, there were 19 primary total knee arthroplasties (TKAs), ten revision TKAs (varus-valgus constraint), 20 hinged TKAs, one arthrodesis (nail), one failed spacer (performed elsewhere), 21 distal femoral endoprosthetic arthroplasties, and 22 proximal tibial arthroplasties.Aims
Methods
Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.Aims
Methods
Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties. Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosisAims
Methods
The aim of this study was to analyse the gait
pattern, muscle force and functional outcome of patients who had undergone
replacement of the proximal tibia for tumour and alloplastic reconstruction
of the extensor mechanism using the patellar-loop technique. Between February 1998 and December 2009, we carried out wide
local excision of a primary sarcoma of the proximal tibia, proximal
tibial replacement and reconstruction of the extensor mechanism
using the patellar-loop technique in 18 patients. Of these, nine
were available for evaluation after a mean of 11.6 years (0.5 to
21.6). The strength of the knee extensors was measured using an
Isobex machine and gait analysis was undertaken in our gait assessment
laboratory. Functional outcome was assessed using the American Knee
Society (AKS) and Musculoskeletal Tumor Society (MSTS) scores. The gait pattern of the patients differed in ground contact time,
flexion heel strike, maximal flexion loading response and total
sagittal plane excursion. The mean maximum active flexion was 91°
(30° to 110°). The overall mean extensor lag was 1° (0° to 5°).
The mean extensor muscle strength was 25.8% (8.3% to 90.3%) of that
in the non-operated leg (p <
0.001). The mean functional scores
were 68.7% (43.4% to 83.3%) (MSTS) and 71.1 (30 to 90) (AKS functional
score). In summary, the results show that reconstruction of the extensor
mechanism using this technique gives good biomechanical and functional
results. The patients’ gait pattern is close to normal, except for
a somewhat stiff knee gait pattern. The strength of the extensor
mechanism is reduced, but sufficient for walking. Cite this article:
Metallosis is a rare cause of failure after total knee replacement and has only previously been reported when there has been abnormal metal-on-metal contact. We describe 14 patients (15 knees) whose total knee replacement required revision for a new type of early failure caused by extensive metallosis. A modification of a cementless rotating platform implant, which had previously had excellent long-term survival, had been used in each case. The change was in the form of a new porous-beaded surface on the femoral component to induce cementless fixation, which had been used successfully in the fixation of acetabular and tibial components. This modification appeared to have resulted in metallosis due to abrasive two-body wear. The component has subsequently been recalled and is no longer in use. The presentation, investigation, and findings at revision are described and a possible aetiology and its implications are discussed.