Advertisement for orthosearch.org.uk
Results 1 - 20 of 43
Results per page:
Bone & Joint Research
Vol. 12, Issue 3 | Pages 199 - 201
7 Mar 2023
Brzeszczyńska J Brzeszczyński F

Cite this article: Bone Joint Res 2023;12(3):199–201.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 668 - 676
1 Oct 2021
Liu L Li Z Chen S Cui H Li X Dai G Zhong F Hao W Zhang K Liu H

Aims

Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy.

Methods

Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 474 - 487
2 Aug 2021
Duan M Wang Q Liu Y Xie J

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims

The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model.

Methods

A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 134 - 136
1 Feb 2021
Im G

The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods.

Cite this article: Bone Joint Res 2021;10(2):134–136.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 719 - 728
1 Oct 2020
Wang J Zhou L Zhang Y Huang L Shi Q

Aims

The purpose of our study was to determine whether mesenchymal stem cells (MSCs) are an effective and safe therapeutic agent for the treatment of knee osteoarthritis (OA), owing to their cartilage regeneration potential.

Methods

We searched PubMed, Embase, and the Cochrane Library, with keywords including “knee osteoarthritis” and “mesenchymal stem cells”, up to June 2019. We selected randomized controlled trials (RCTs) that explored the use of MSCs to treat knee OA. The visual analogue scale (VAS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC), adverse events, and the whole-organ MRI score (WORMS) were used as the primary evaluation tools in the studies. Our meta-analysis included a subgroup analysis of cell dose and cell source.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice.

Cite this article: Bone Joint Res 2020;9(7):351–359.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 469 - 471
1 Oct 2019
Evans CH


Bone & Joint Research
Vol. 8, Issue 8 | Pages 405 - 413
1 Aug 2019
Huang J Bao X Xia W Zhu L Zhang J Ma J Jiang N Yang J Chen Q Jing T Liu J Ma D Xu G

Objectives

X-linked hypophosphataemic rickets (XLHR) is a disease of impaired bone mineralization characterized by hypophosphataemia caused by renal phosphate wasting. The main clinical manifestations of the disorder are O-shaped legs, X-shaped legs, delayed growth, and bone pain. XLHR is the most common inheritable form of rickets, with an incidence of 1/20 000 in humans. It accounts for approximately 80% of familial cases of hypophosphataemia and serves as the prototype of defective tubular phosphate (PO43+) transport, due to extra renal defects resulting in unregulated FGF23 activity. XLHR is caused by loss-of-function mutations in the PHEX gene. The aim of this research was to identify the genetic defect responsible for familial hypophosphataemic rickets in a four-generation Chinese Han pedigree and to analyze the function of this mutation.

Methods

The genome DNA samples of all members in the pedigree were extracted from whole blood. We sequenced all exons of the PHEX and FGF23 genes, as well as the adjacent splice site sequence with Sanger sequencing. Next, we analyzed the de novo mutation c.1692 del A of the PHEX gene with an online digital service and investigated the mutant PHEX with SWISS-MODEL, immunofluorescence, and protein stability detection.


Bone & Joint 360
Vol. 8, Issue 4 | Pages 42 - 44
1 Aug 2019


Objectives. Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. Methods. The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity. Results. High IL-1Ra and miR-140 expression levels were detected both in vitro and in vivo. In vitro, compared with the pBudCE4.1 group, the transgenic group presented with significantly increased chondrocyte proliferation and glycosaminoglycan (GAG) synthesis, as well as increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and TIMP metallopeptidase inhibitor 1 (TIMP-1) levels. Nitric oxide (NO) synthesis was reduced, as were a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS-5) and matrix metalloproteinase (MMP)-13 levels. In vivo, the exogenous genes reduced the synovial fluid GAG and NO concentrations and the ADAMTS-5 and MMP-13 levels in cartilage. In contrast, COL2A1, ACAN, and TIMP-1 levels were increased, and the cartilage Mankin score was decreased in the transgenic group compared with the pBudCE4.1 group. Double gene combination produced greater efficacies than each single gene, both in vitro and in vivo. Conclusion. This study suggests that pNNS-CS is a good candidate for treating cartilage defects via gene therapy, and that IL-1Ra in combination with miR-140 produces promising biological effects on cartilage defects. Cite this article: R. Zhao, S. Wang, L. Jia, Q. Li, J. Qiao, X. Peng. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019;8:165–178. DOI: 10.1302/2046-3758.83.BJR-2018-0222.R1


Bone & Joint Research
Vol. 7, Issue 4 | Pages 289 - 297
1 Apr 2018
Sanghani-Kerai A Osagie-Clouard L Blunn G Coathup M

Objectives

This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis.

Methods

Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 271 - 284
1 Mar 2018
Hexter AT Thangarajah T Blunn G Haddad FS

Aims. The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR. . Materials and Methods. In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies). . Results. Seven categories of biological interventions were identified: growth factors, biomaterials, stem cells, gene therapy, autologous tissue, biophysical/environmental, and pharmaceuticals. The methodological quality of animal studies was moderate in 97%, but only 10% used clinically relevant outcome measures. The most interventions in clinical trials target the graft-tunnel interface and are applied intraoperatively. Platelet-rich plasma is the most studied intervention, but the clinical outcomes are mixed, and the methodological quality of studies was suboptimal. Other biological therapies investigated in clinical trials include: remnant-augmented ACLR; bone substitutes; calcium phosphate-hybridized grafts; extracorporeal shockwave therapy; and adult autologus non-cultivated stem cells. Conclusion. There is extensive preclinical research supporting the use of biological therapies to augment ACLR. Further clinical studies that meet the minimum standards of reporting are required to determine whether emerging biological strategies will provide tangible benefits in patients undergoing ACLR. Cite this article: Bone Joint J 2018;100-B:271–84


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1132 - 1139
1 Sep 2017
Williams N Challoumas D Ketteridge D Cundy PJ Eastwood DM

The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders with clinical manifestations relevant to the orthopaedic surgeon. Our aim was to review the recent advances in their management and the implications for surgical practice.

The current literature about MPSs is summarised, emphasising orthopaedic complications and their management.

Recent advances in the diagnosis and management of MPSs include the recognition of slowly progressive, late presenting subtypes, developments in life-prolonging systemic treatment and potentially new indications for surgical treatment. The outcomes of surgery in these patients are not yet validated and some procedures have a high rate of complications which differ from those in patients who do not have a MPS.

The diagnosis of a MPS should be considered in adolescents or young adults with a previously unrecognised dysplasia of the hip. Surgeons treating patients with a MPS should report their experience and studies should include the assessment of function and quality of life to guide treatment.

Cite this article: Bone Joint J 2017;99-B:1132–9


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 924 - 932
1 Jul 2015
Lee MC Ha C Elmallah RK Cherian JJ Cho JJ Kim TW Bin S Mont MA

The aim of this study was to assess the effect of injecting genetically engineered chondrocytes expressing transforming growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis. We assessed the resultant function, pain and quality of life.

A total of 54 patients (20 men, 34 women) who had a mean age of 58 years (50 to 66) were blinded and randomised (1:1) to receive a single injection of the active treatment or a placebo. We assessed post-treatment function, pain severity, physical function, quality of life and the incidence of treatment-associated adverse events. Patients were followed at four, 12 and 24 weeks after injection.

At final follow-up the treatment group had a significantly greater improvement in the mean International Knee Documentation Committee score than the placebo group (16 points; -18 to 49, vs 8 points; -4 to 37, respectively; p = 0.03). The treatment group also had a significantly improved mean visual analogue score at final follow-up (-25; -85 to 34, vs -11 points; -51 to 25, respectively; p = 0.032). Both cohorts showed an improvement in Western Ontario and McMaster Osteoarthritis Index and Knee Injury and Osteoarthritis Outcome Scores, but these differences were not statistically significant. One patient had an anaphylactic reaction to the preservation medium, but recovered within 24 hours. All other adverse events were localised and resolved without further action.

This technique may result in improved clinical outcomes, with the aim of slowing the degenerative process, leading to improvements in pain and function. However, imaging and direct observational studies are needed to verify cartilage regeneration. Nevertheless, this study provided a sufficient basis to proceed to further clinical testing.

Cite this article: Bone Joint J 2015;97-B:924–32.


Bone & Joint Research
Vol. 3, Issue 2 | Pages 20 - 31
1 Feb 2014
Kiapour AM Murray MM

Injury to the anterior cruciate ligament (ACL) is one of the most devastating and frequent injuries of the knee. Surgical reconstruction is the current standard of care for treatment of ACL injuries in active patients. The widespread adoption of ACL reconstruction over primary repair was based on early perception of the limited healing capacity of the ACL. Although the majority of ACL reconstruction surgeries successfully restore gross joint stability, post-traumatic osteoarthritis is commonplace following these injuries, even with ACL reconstruction. The development of new techniques to limit the long-term clinical sequelae associated with ACL reconstruction has been the main focus of research over the past decades. The improved knowledge of healing, along with recent advances in tissue engineering and regenerative medicine, has resulted in the discovery of novel biologically augmented ACL-repair techniques that have satisfactory outcomes in preclinical studies. This instructional review provides a summary of the latest advances made in ACL repair.

Cite this article: Bone Joint Res 2014;3:20–31.


Bone & Joint 360
Vol. 2, Issue 3 | Pages 23 - 25
1 Jun 2013

The June 2013 Foot & Ankle Roundup360 looks at: soft-tissue pain following arthroplasty; pigmented villonodular synovitis of the foot and ankle; ankles, allograft and arthritis; open calcaneal fracture; osteochondral lesions in the longer term; severe infections in diabetic feet; absorbable first ray fixation; and showering after foot surgery.


Bone & Joint 360
Vol. 2, Issue 1 | Pages 37 - 39
1 Feb 2013

The February 2013 Children’s orthopaedics Roundup360 looks at: the human genome; new RNA; cells, matrix and gene enhancement; the histology of x-rays; THR and VTE in the Danish population; potential therapeutic targets for GCT; optimising vancomycin elution from cement; and how much sleep is enough.