Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint 360
Vol. 6, Issue 3 | Pages 41 - 43
1 Jun 2017
Foy MA


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1427 - 1432
1 Oct 2012
Chassanidis CG Malizos KN Varitimidis S Samara S Koromila T Kollia P Dailiana Z

Periosteum is important for bone homoeostasis through the release of bone morphogenetic proteins (BMPs) and their effect on osteoprogenitor cells. Smoking has an adverse effect on fracture healing and bone regeneration. The aim of this study was to evaluate the effect of smoking on the expression of the BMPs of human periosteum. Real-time polymerase chain reaction was performed for BMP-2,-4,-6,-7 gene expression in periosteal samples obtained from 45 fractured bones (19 smokers, 26 non-smokers) and 60 non-fractured bones (21 smokers, 39 non-smokers). A hierarchical model of BMP gene expression (BMP-2 > BMP-6 > BMP-4 > BMP-7) was demonstrated in all samples. When smokers and non-smokers were compared, a remarkable reduction in the gene expression of BMP-2, -4 and -6 was noticed in smokers. The comparison of fracture and non-fracture groups demonstrated a higher gene expression of BMP-2, -4 and -7 in the non-fracture samples. Within the subgroups (fracture and non-fracture), BMP gene expression in smokers was either lower but without statistical significance in the majority of BMPs, or similar to that in non-smokers with regard to BMP-4 in fracture and BMP-7 in non-fracture samples. In smokers, BMP gene expression of human periosteum was reduced, demonstrating the effect of smoking at the molecular level by reduction of mRNA transcription of periosteal BMPs. Among the BMPs studied, BMP-2 gene expression was significantly higher, highlighting its role in bone homoeostasis.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1313 - 1320
1 Oct 2012
Middleton RG Shabani F Uzoigwe CE AS Moqsith M Venkatesan M

Osteoporosis is common and the health and financial cost of fragility fractures is considerable. The burden of cardiovascular disease has been reduced dramatically by identifying and targeting those most at risk. A similar approach is potentially possible in the context of fragility fractures. The World Health Organization created and endorsed the use of FRAX, a fracture risk assessment tool, which uses selected risk factors to calculate a quantitative, patient-specific, ten-year risk of sustaining a fragility fracture. Treatment can thus be based on this as well as on measured bone mineral density. It may also be used to determine at-risk individuals, who should undergo bone densitometry. FRAX has been incorporated into the national osteoporosis guidelines of countries in the Americas, Europe, the Far East and Australasia. The United Kingdom National Institute for Health and Clinical Excellence also advocates its use in their guidance on the assessment of the risk of fragility fracture, and it may become an important tool to combat the health challenges posed by fragility fractures