Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1039 - 1043
1 Oct 2024
Luo TD Kayani B Magan A Haddad FS

The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise.

Cite this article: Bone Joint J 2024;106-B(10):1039–1043.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1264 - 1269
1 Oct 2018
Thomas AM Simmons MJ

Deep infection was identified as a serious complication in the earliest days of total hip arthroplasty. It was identified that airborne contamination in conventional operating theatres was the major contributing factor. As progress was made in improving the engineering of operating theatres, airborne contamination was reduced. Detailed studies were carried out relating airborne contamination to deep infection rates.

In a trial conducted by the United Kingdom Medical Research Council (MRC), it was found that the use of ultra-clean air (UCA) operating theatres was associated with a significant reduction in deep infection rates. Deep infection rates were further reduced by the use of a body exhaust system. The MRC trial also included a detailed microbiology study, which confirmed the relationship between airborne contamination and deep infection rates.

Recent observational evidence from joint registries has shown that in contemporary practice, infection rates remain a problem, and may be getting worse. Registry observations have also called into question the value of “laminar flow” operating theatres.

Observational evidence from joint registries provides very limited evidence on the efficacy of UCA operating theatres. Although there have been some changes in surgical practice in recent years, the conclusions of the MRC trial remain valid, and the use of UCA is essential in preventing deep infection.

There is evidence that if UCA operating theatres are not used correctly, they may have poor microbiological performance. Current UCA operating theatres have limitations, and further research is required to update them and improve their microbiological performance in contemporary practice.

Cite this article: Bone Joint J 2018;100-B:1264–9.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1153 - 1154
1 Sep 2016
Haddad FS


Bone & Joint 360
Vol. 3, Issue 3 | Pages 39 - 40
1 Jun 2014
Arastu M


Bone & Joint Research
Vol. 2, Issue 3 | Pages 58 - 65
1 Mar 2013
Johnson R Jameson SS Sanders RD Sargant NJ Muller SD Meek RMD Reed MR

Objectives

To review the current best surgical practice and detail a multi-disciplinary approach that could further reduce joint replacement infection.

Methods

Review of relevant literature indexed in PubMed.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 254 - 256
1 Feb 2012
Legg AJ Cannon T Hamer AJ

Patient warming significantly decreases the risk of surgical site infection. Recently there have been concerns that forced air warming may interfere with unidirectional airflow, potentially posing an increased risk of infection. Our null hypothesis was that forced air and radiant warming devices do not increase the temperature and the number of particles over the surgical site when compared with no warming device. A forced air warming device was compared with a radiant warming device and no warming device as a control. The temperature and number of particles were measured over the surgical site. The theatre was prepared as for a routine lower-limb arthroplasty operation, and the same volunteer was used throughout the study. Forced air warming resulted in a significant mean increase in the temperature (1.1°C vs 0.4°C, p < 0.0001) and number of particles (1038.2 vs 274.8, p = 0.0087) over the surgical site when compared with radiant warming, which raises concern as bacteria are known to require particles for transport