Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 359 - 367
1 Mar 2022
Deere K Matharu GS Ben-Shlomo Y Wilkinson JM Blom AW Sayers A Whitehouse MR

Aims

A recent report from France suggested an association between the use of cobalt-chrome (CoCr) femoral heads in total hip arthroplasties (THAs) and an increased risk of dilated cardiomyopathy and heart failure. CoCr is a commonly used material in orthopaedic implants. If the reported association is causal, the consequences would be significant given the millions of joint arthroplasties and other orthopaedic procedures in which CoCr is used annually. We examined whether CoCr-containing THAs were associated with an increased risk of all-cause mortality, heart outcomes, cancer, and neurodegenerative disorders in a large national database.

Methods

Data from the National Joint Registry was linked to NHS English hospital inpatient episodes for 374,359 primary THAs with up to 14.5 years' follow-up. We excluded any patients with bilateral THAs, knee arthroplasties, indications other than osteoarthritis, aged under 55 years, and diagnosis of one or more outcome of interest before THA. Implants were grouped as either containing CoCr or not containing CoCr. The association between implant construct and the risk of all-cause mortality and incident heart failure, cancer, and neurodegenerative disorders was examined.


Bone & Joint 360
Vol. 8, Issue 4 | Pages 16 - 19
1 Aug 2019


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 32 - 40
1 Jan 2019
Hellman MD Ford MC Barrack RL

Aims

Surface replacement arthroplasty (SRA), compared with traditional total hip arthroplasty (THA), is more expensive and carries unique concern related to metal ions production and hypersensitivity. Additionally, SRA is a more demanding procedure with a decreased margin for error compared with THA. To justify its use, SRA must demonstrate comparable component survival and some clinical advantages. We therefore performed a systematic literature review to investigate the differences in complication rates, patient-reported outcomes, stress shielding, and hip biomechanics between SRA and THA.

Materials and Methods

A systematic review of the literature was completed using MEDLINE and EMBASE search engines. Inclusion criteria were level I to level III articles that reported clinical outcomes following primary SRA compared with THA. An initial search yielded 2503 potential articles for inclusion. Exclusion criteria included review articles, level IV or level V evidence, less than one year’s follow-up, and previously reported data. In total, 27 articles with 4182 patients were available to analyze.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives. Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co. 2+. ) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods. To evaluate the protective effect of zinc ions (Zn. 2+. ), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn. 2+. for four hours. The cells were then exposed to different concentrations of CoNPs and Co. 2+. for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results. CoNPs and Co. 2+. can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co. 2+. , decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion. These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co. 2+. in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2


Bone & Joint Research
Vol. 5, Issue 6 | Pages 215 - 217
1 Jun 2016
Pijls BG Nelissen RGHH


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 579 - 584
1 May 2016
Osman K Panagiotidou AP Khan M Blunn G Haddad FS

There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface.

We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice.

Cite this article: Bone Joint J 2016;98-B:579–84.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 6 - 13
1 Jan 2016
Cheung AC Banerjee S Cherian JJ Wong F Butany J Gilbert C Overgaard C Syed K Zywiel MG Jacobs JJ Mont MA

Recently, the use of metal-on-metal articulations in total hip arthroplasty (THA) has led to an increase in adverse events owing to local soft-tissue reactions from metal ions and wear debris. While the majority of these implants perform well, it has been increasingly recognised that a small proportion of patients may develop complications secondary to systemic cobalt toxicity when these implants fail. However, distinguishing true toxicity from benign elevations in cobalt ion levels can be challenging. . The purpose of this two part series is to review the use of cobalt alloys in THA and to highlight the following related topics of interest: mechanisms of cobalt ion release and their measurement, definitions of pathological cobalt ion levels, and the pathophysiology, risk factors and treatment of cobalt toxicity. Historically, these metal-on-metal arthroplasties are composed of a chromium-cobalt articulation. . The release of cobalt is due to the mechanical and oxidative stresses placed on the prosthetic joint. It exerts its pathological effects through direct cellular toxicity. . This manuscript will highlight the pathophysiology of cobalt toxicity in patients with metal-on-metal hip arthroplasties. Take home message: Patients with new or evolving hip symptoms with a prior history of THA warrant orthopaedic surgical evaluation. Increased awareness of the range of systemic symptoms associated with cobalt toxicity, coupled with prompt orthopaedic intervention, may forestall the development of further complications. Cite this article: Bone Joint J 2016;98-B:6–13


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 14 - 20
1 Jan 2016
Zywiel MG Cherian JJ Banerjee S Cheung AC Wong F Butany J Gilbert C Overgaard C Syed K Jacobs JJ Mont MA

As adverse events related to metal on metal hip arthroplasty have been better understood, there has been increased interest in toxicity related to the high circulating levels of cobalt ions. However, distinguishing true toxicity from benign elevations in cobalt levels can be challenging. The purpose of this review is to examine the use of cobalt alloys in total hip arthroplasty, to review the methods of measuring circulating cobalt levels, to define a level of cobalt which is considered pathological and to review the pathophysiology, risk factors and treatment of cobalt toxicity. To the best of our knowledge, there are 18 published cases where cobalt metal ion toxicity has been attributed to the use of cobalt-chromium alloys in hip arthroplasty. Of these cases, the great majority reported systemic toxic reactions at serum cobalt levels more than 100 μg/L. This review highlights some of the clinical features of cobalt toxicity, with the goal that early awareness may decrease the risk factors for the development of cobalt toxicity and/or reduce its severity. Take home message: Severe adverse events can arise from the release of cobalt from metal-on-metal arthroplasties, and as such, orthopaedic surgeons should not only be aware of the presenting problems, but also have the knowledge to treat appropriately. Cite this article: Bone Joint J 2016;98-B:14–20


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 31 - 37
1 Jan 2013
Zywiel MG Brandt J Overgaard CB Cheung AC Turgeon TR Syed KA

Symptomatic cobalt toxicity from a failed total hip replacement is a rare but devastating complication. It has been reported following revision of fractured ceramic components, as well as in patients with failed metal-on-metal articulations. Potential clinical findings include fatigue, weakness, hypothyroidism, cardiomyopathy, polycythaemia, visual and hearing impairment, cognitive dysfunction, and neuropathy. We report a case of an otherwise healthy 46-year-old patient, who developed progressively worsening symptoms of cobalt toxicity beginning approximately six months following synovectomy and revision of a fractured ceramic-on-ceramic total hip replacement to a metal-on-polyethylene bearing. The whole blood cobalt levels peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy. Implant retrieval analysis confirmed a loss of 28.3 g mass of the cobalt–chromium femoral head as a result of severe abrasive wear by ceramic particles embedded in the revision polyethylene liner. Autopsy findings were consistent with heavy metal-induced cardiomyopathy. We recommend using new ceramics at revision to minimise the risk of wear-related cobalt toxicity following breakage of ceramic components. Cite this article: Bone Joint J 2013;95-B:31–7


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 502 - 505
1 Apr 2008
Khan WS Agarwal M Malik AA Cox AG Denton J Holt EM

Metallosis after shoulder replacement has not previously been described in the literature. We report a patient who developed extensive metallosis after implantation of an uncemented Nottingham shoulder replacement. He underwent a revision procedure.

Examination of the retrieved prosthesis showed that the titanium porous coating was separating from the humeral stem and becoming embedded in the ultra-high-molecular-weight polyethylene glenoid component, resulting in abrasive wear of the humeral component. There was metallosis despite exchange of the modular humeral head. Both components had to be exchanged to resolve the problem.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 475 - 482
1 May 1997
Allen MJ Myer BJ Millett PJ Rushton N

Particulate wear debris can induce the release of bone-resorbing cytokines from cultured macrophages and fibroblasts in vitro, and these mediators are believed to be the cause of the periprosthetic bone resorption which leads to aseptic loosening in vivo. Much less is known about the effects of particulate debris on the growth and metabolism of osteoblastic cells. We exposed two human osteoblast-like cell lines (SaOS-2 and MG-63) to particulate cobalt, chromium and cobalt-chromium alloy at concentrations of 0, 0.01, 0.1 and 1.0 mg/ml. Cobalt was toxic to both cell lines and inhibited the production of type-I collagen, osteocalcin and alkaline phosphatase. Chromium and cobalt-chromium were well tolerated by both cell lines, producing no cytotoxicity and no inhibition of type-I collagen synthesis. At the highest concentration tested (1.0 mg/ml), however, chromium inhibited alkaline phosphatase activity, and both chromium and cobalt-chromium alloy inhibited osteocalcin expression. Our results clearly show that particulate metal debris can modulate the growth and metabolism of osteoblastic cells in vitro. Reduced osteoblastic activity at the bone-implant interface may be an important mechanism by which particulate wear debris influences the pathogenesis of aseptic loosening in vivo