Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 536 - 541
1 Mar 2021
Ferlic PW Hauser L Götzen M Lindtner RA Fischler S Krismer M

Aims

The aim of this retrospective study was to compare the correction achieved using a convex pedicle screw technique and a low implant density achieved using periapical concave-sided screws and a high implant density. We hypothesized that there would be no difference in outcome between the two techniques.

Methods

We retrospectively analyzed a series of 51 patients with a thoracic adolescent idiopathic scoliosis. There were 26 patients in the convex pedicle screw group who had screws implanted periapically (Group 2) and a control group of 25 patients with bilateral pedicle screws (Group 1). The patients’ charts were reviewed and pre- and postoperative radiographs evaluated. Postoperative patient-reported outcome measures (PROMs) were recorded.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 124 - 130
1 Feb 2018
Coric D Bullard DE Patel VV Ryaby JT Atkinson BL He D Guyer RD

Objectives

Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures.

Methods

Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a post hoc (PH) analysis of high-risk subjects from the FDA study (PH PEMF); and a multicentre, open-label (OL) study consisting of 274 subjects treated with PEMF (OL PEMF). Fisher’s exact test and multivariate logistic regression was used to compare fusion rates between PEMF-treated subjects and historical controls.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1527 - 1532
1 Nov 2013
Spiro AS Rupprecht M Stenger P Hoffman M Kunkel P Kolb JP Rueger JM Stuecker R

A combined anterior and posterior surgical approach is generally recommended in the treatment of severe congenital kyphosis, despite the fact that the anterior vascular supply of the spine and viscera are at risk during exposure. The aim of this study was to determine whether the surgical treatment of severe congenital thoracolumbar kyphosis through a single posterior approach is feasible, safe and effective.

We reviewed the records of ten patients with a mean age of 11.1 years (5.4 to 14.1) who underwent surgery either by pedicle subtraction osteotomy or by vertebral column resection with instrumented fusion through a single posterior approach.

The mean kyphotic deformity improved from 59.9° (45° to 110°) pre-operatively to 17.5° (3° to 40°) at a mean follow-up of 47.0 months (29 to 85). Spinal cord monitoring was used in all patients and there were no complications during surgery. These promising results indicate the possible advantages of the described technique over the established procedures. We believe that surgery should be performed in case of documented progression and before structural secondary curves develop. Our current strategy after documented progression is to recommend surgery at the age of five years and when 90% of the diameter of the spinal canal has already developed.

Cite this article: Bone Joint J 2013;95-B:1527–32.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 972 - 976
1 Jul 2013
Chang KC Samartzis D Fuego SM Dhatt SS Wong YW Cheung WY Luk KDK Cheung KMC

Transarticular screw fixation with autograft is an established procedure for the surgical treatment of atlantoaxial instability. Removal of the posterior arch of C1 may affect the rate of fusion. This study assessed the rate of atlantoaxial fusion using transarticular screws with or without removal of the posterior arch of C1. We reviewed 30 consecutive patients who underwent atlantoaxial fusion with a minimum follow-up of two years. In 25 patients (group A) the posterior arch of C1 was not excised (group A) and in five it was (group B). Fusion was assessed on static and dynamic radiographs. In selected patients CT imaging was also used to assess fusion and the position of the screws. There were 15 men and 15 women with a mean age of 51.2 years (23 to 77) and a mean follow-up of 7.7 years (2 to 11.6). Stable union with a solid fusion or a stable fibrous union was achieved in 29 patients (97%). In Group A, 20 patients (80%) achieved a solid fusion, four (16%) a stable fibrous union and one (4%) a nonunion. In Group B, stable union was achieved in all patients, three having a solid fusion and two a stable fibrous union. There was no statistically significant difference between the status of fusion in the two groups. Complications were noted in 12 patients (40%); these were mainly related to the screws, and included malpositioning and breakage. The presence of an intact or removed posterior arch of C1 did not affect the rate of fusion in patients with atlantoaxial instability undergoing C1/C2 fusion using transarticular screws and autograft.

Cite this article: Bone Joint J 2013;95-B:972–6.