Advertisement for orthosearch.org.uk
Results 1 - 100 of 123
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 764 - 778
12 Dec 2024
Huang Q Zhuo Y Duan Z Long Y Wang J Zhang Z Fan S Huang Y Deng K Xin H

Aims

Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application.

Methods

In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims

Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism.

Methods

A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 632 - 646
7 Nov 2024
Diaz Dilernia F Watson D Heinrichs DE Vasarhelyi E

Aims

The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus.

Methods

We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains.


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 837 - 843
7 Oct 2024
Zalikha AK Waheed MA Twal C Keeley J El-Othmani MM Hajj Hussein I

Aims

This study aims to evaluate the impact of metabolic syndrome in the setting of obesity on in-hospital outcomes and resource use after total joint replacement (TJR).

Methods

A retrospective analysis was conducted using the National Inpatient Sample from 2006 to the third quarter of 2015. Discharges representing patients aged 40 years and older with obesity (BMI > 30 kg/m2) who underwent primary TJR were included. Patients were stratified into two groups with and without metabolic syndrome. The inverse probability of treatment weighting (IPTW) method was used to balance covariates.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1074 - 1083
1 Oct 2024
Sørensen RR Timm S Rasmussen LE Brasen CL Varnum C

Aims

The influence of metabolic syndrome (MetS) on the outcome after hip and knee arthroplasty is debated. We aimed to investigate the change in patient-reported outcome measure (PROM) scores after hip and knee arthroplasty, comparing patients with and without MetS.

Methods

From 1 May 2017 to 30 November 2019, a prospective cohort of 2,586 patients undergoing elective unilateral hip and knee arthroplasty was established in Denmark. Data from national registries and a local database were used to determine the presence of MetS. Patients’ scores on Oxford Hip Score (OHS) or Oxford Knee Score (OKS), EuroQol five-dimension five-level questionnaire (EQ-5D-5L), University of California, Los Angeles (UCLA) Activity Scale, and Forgotten Joint Score (FJS) at baseline, three, 12, and 24 months after surgery were collected. Primary outcome was the difference between groups from baseline to 12 months in OHS and OKS. Secondary outcomes were scores of OHS and OKS at three and 24 months and EQ-5D-5L, UCLA Activity Scale, and FJS at three, 12, and 24 months after surgery. Generalized linear mixed model was applied, adjusting for age, sex, Charlson Comorbidity Index, and smoking to present marginal mean and associated 95% CIs.


Aims

This study investigated vancomycin-microbubbles (Vm-MBs) and meropenem (Mp)-MBs with ultrasound-targeted microbubble destruction (UTMD) to disrupt biofilms and improve bactericidal efficiency, providing a new and promising strategy for the treatment of device-related infections (DRIs).

Methods

A film hydration method was used to prepare Vm-MBs and Mp-MBs and examine their characterization. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli were treated with different groups. Biofilm biomass differences were determined by staining. Thickness and bacterial viability were observed with confocal laser scanning microscope (CLSM). Colony counts were determined by plate-counting. Scanning electron microscopy (SEM) observed bacterial morphology.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Bone & Joint 360
Vol. 13, Issue 3 | Pages 45 - 47
3 Jun 2024

The June 2024 Research Roundup360 looks at: Do the associations of daily steps with mortality and incident cardiovascular disease differ by sedentary time levels?; Large-scale assessment of ChatGPT in benign and malignant bone tumours imaging report diagnosis and its potential for clinical applications; Long-term effects of diffuse idiopathic skeletal hyperostosis on physical function: a longitudinal analysis; Effect of intramuscular fat in the thigh muscles on muscle architecture and physical performance in the middle-aged females with knee osteoarthritis; Preoperative package of care for osteoarthritis an opportunity not to be missed?; Superiority of kinematic alignment over mechanical alignment in total knee arthroplasty during medium- to long-term follow-up: a meta-analysis and trial sequential analysis.



Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims

This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model.

Methods

The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims

Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear.

Methods

In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims

A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis.

Methods

Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims

Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA.

Methods

First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 667 - 676
19 Oct 2023
Forteza-Genestra MA Antich-Rosselló M Ramis-Munar G Calvo J Gayà A Monjo M Ramis JM

Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods. pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 10. 9. particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results. Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion. In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine. Cite this article: Bone Joint Res 2023;12(10):667–676


Bone & Joint 360
Vol. 12, Issue 5 | Pages 45 - 47
1 Oct 2023

The October 2023 Research Roundup360 looks at: Gut microbiota in high-risk individuals for rheumatoid arthritis associated with disturbed metabolome and initiates arthritis by triggering mucosal immunity imbalance; International Consensus on Anaemia Management in Surgical Patients (ICCAMS); Sleep disturbance trends in the short-term postoperative period for patients undergoing total joint replacement; Achilles tendon tissue turnover before and immediately after an acute rupture; Quadriceps or hip exercises for patellofemoral pain? A randomized controlled equivalence trial; Total-body MRI for screening in patients with multiple osteochondromas.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims. The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. Methods. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties. Results. Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice. Lipidomic sequencing and bioinformatic analysis identified 373 differential lipids, 176 of which were upregulated and 197 downregulated. Functional enrichment analysis revealed a significant downregulation of the pathways: fat digestion and absorption (ko04975) and lipolysis regulation in adipocytes (ko04923) in DIO mice, leading to local fat accumulation. The use of 3D imaging confirmed the increase in fat accumulation within the bone marrow cavity of obese mice. Conclusion. Our study sheds light on the intricate interplay between fat and bone, and provides a non-toxic and non-invasive method for measuring marrow adipose tissue. Cite this article: Bone Joint Res 2023;12(9):580–589


Bone & Joint Research
Vol. 12, Issue 8 | Pages 455 - 466
1 Aug 2023
Zhou H Chen C Hu H Jiang B Yin Y Zhang K Shen M Wu S Wang Z

Aims

Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR).

Methods

Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically.


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint Research
Vol. 12, Issue 2 | Pages 91 - 102
1 Feb 2023
Li Z Chen M Wang Z Fan Q Lin Z Tao X Wu J Liu Z Lin R Zhao C

Aims

Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis.

Methods

Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 97 - 98
1 Feb 2023
Farhan-Alanie OM Kennedy JW Meek RMD Haddad FS


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


Bone & Joint 360
Vol. 11, Issue 5 | Pages 27 - 30
1 Oct 2022


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Bone & Joint Research
Vol. 11, Issue 7 | Pages 426 - 438
20 Jul 2022
Luo P Wang P Xu J Hou W Xu P Xu K Liu L

Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps.

Cite this article: Bone Joint Res 2022;11(7):426–438.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Research
Vol. 11, Issue 1 | Pages 40 - 48
27 Jan 2022
Liao W Sun J Wang Y He Y Su K Lu Y Liao G Sun Y

Aims

In the repair of condylar cartilage injury, synovium-derived mesenchymal stem cells (SMSCs) migrate to an injured site and differentiate into cartilage. This study aimed to confirm that histone deacetylase (HDAC) inhibitors, which alleviate arthritis, can improve chondrogenesis inhibited by IL-1β, and to explore its mechanism.

Methods

SMSCs were isolated from synovium specimens of patients undergoing temporomandibular joint (TMJ) surgery. Chondrogenic differentiation potential of SMSCs was evaluated in vitro in the control, IL-1β stimulation, and IL-1β stimulation with HDAC inhibitors groups. The effect of HDAC inhibitors on the synovium and condylar cartilage in a rat TMJ arthritis model was evaluated.


Aims

Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing.

Methods

A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively.


Bone & Joint Open
Vol. 2, Issue 11 | Pages 926 - 931
9 Nov 2021
Houdek MT Wyles CC Smith JH Terzic A Behfar A Sierra RJ

Aims

Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with platelet-rich plasma (PRP), has been used as an adjuvant to hip decompression. Early results have shown promise for hip preservation in patients with osteonecrosis (ON) of the femoral head. The purpose of the current study is to examine the mid-term outcome of this treatment in patients with precollapse corticosteroid-induced ON of the femoral head.

Methods

In all, 22 patients (35 hips; 11 males and 11 females) with precollapse corticosteroid-induced ON of the femoral head underwent hip decompression combined with BMAC and PRP. Mean age and BMI were 43 years (SD 12) and 31 kg/m² (SD 6), respectively, at the time of surgery. Survivorship free from femoral head collapse and total hip arthroplasty (THA) and risk factors for progression were evaluated at minimum five-years of clinical follow-up with a mean follow-up of seven years (5 to 8).


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims

Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA.

Methods

OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 693 - 703
1 Oct 2021
Wang X Wang D Xia P Cheng K Wang Q Wang X Lin Q Song J Chen A Li X

Aims

To evaluate the effect of ultrasound-targeted simvastatin-loaded microbubble destruction (UTMDSV) for alleviation of the progression of osteoarthritis (OA) in rabbits through modulation of the peroxisome proliferator-activated receptor (PPARγ).

Methods

In vitro, OA chondrocytes were treated with ultrasound (US), US-targeted microbubble destruction (UTMD), simvastatin (SV), and UTMDSV on alternate days for four weeks. Chondrocytes were also treated with PPARγ inhibitor, PPARγ inhibitor+ UTMDSV, and UTMDSV. The cholesterol efflux rate and triglyceride levels were measured using an assay kit and oil red O staining, respectively. In vivo, the OA rabbits were treated with a single intra-articular injection of UTMD, SV, and UTMDSV every seven days for four weeks. Cartilage histopathology was assessed by safranin-O staining and the Mankin score. Total cholesterol (TC) and high-density lipoprotein-cholesterol (HDL-C) in rabbit knee synovial fluid were detected by enzyme-marker assay. Aggrecan, collagen II, and PPARγ expression levels were analyzed by Western blotting (WB).


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims

This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients.

Methods

With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 611 - 618
27 Sep 2021
Ali E Birch M Hopper N Rushton N McCaskie AW Brooks RA

Aims

Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components.

Methods

Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 526 - 535
1 Aug 2021
Xin W Yuan S Wang B Qian Q Chen Y

Aims

Circular RNAs (circRNAs) are a novel type of non-coding RNA that plays major roles in the development of diverse diseases including osteonecrosis of the femoral head (ONFH). Here, we explored the impact of hsa_circ_0066523 derived from forkhead box P1 (FOXP1) (also called circFOXP1) on bone mesenchymal stem cells (BMSCs), which is important for ONFH development.

Methods

RNA or protein expression in BMSCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell Counting Kit 8 (CCK8) and 5-ethynyl-2’-deoxyuridine (EdU) were used to analyze cell proliferation. Alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red S staining were employed to evaluate the osteoblastic differentiation. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pull down, and RNA immunoprecipitation (RIP) assays were combined for exploring molecular associations.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims

Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model.

Methods

The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 10, Issue 5 | Pages 328 - 339
31 May 2021
Jia X Huang G Wang S Long M Tang X Feng D Zhou Q

Aims

Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI.

Methods

In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 908 - 915
1 May 2021
O’Donnell JA Wu M Cochrane NH Belay E Myntti MF James GA Ryan SP Seyler TM

Aims

Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm.

Methods

We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 259 - 268
1 Apr 2021
Lou A Wang L Lai W Zhu D Wu W Wang Z Cai Z Yang M

Aims

Rheumatoid arthritis (RA), which mainly results from fibroblast-like synoviocyte (FLS) dysfunction, is related to oxidative stress. Advanced oxidation protein products (AOPPs), which are proinflammatory mediators and a novel biomarker of oxidative stress, have been observed to accumulate significantly in the serum of RA patients. Here, we present the first investigation of the effects of AOPPs on RA-FLSs and the signalling pathway involved in AOPP-induced inflammatory responses and invasive behaviour.

Methods

We used different concentrations of AOPPs (50 to 200 µg/ml) to treat RA-FLSs. Cell migration and invasion and the expression levels of tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-3 (MMP-3), and MMP-13 were investigated. Western blot and immunofluorescence were used to analyze nuclear factor-κB (NF-κB) activation.


Aims

This study aimed to investigate whether human umbilical cord mesenchymal stem cells (UC-MSCs) can prevent articular cartilage degradation and explore the underlying mechanisms in a rat osteoarthritis (OA) model induced by monosodium iodoacetate (MIA).

Methods

Human UC-MSCs were characterized by their phenotype and multilineage differentiation potential. Two weeks after MIA induction in rats, human UC-MSCs were intra-articularly injected once a week for three weeks. The therapeutic effect of human UC-MSCs was evaluated by haematoxylin and eosin, toluidine blue, Safranin-O/Fast green staining, and Mankin scores. Markers of joint cartilage injury and pro- and anti-inflammatory markers were detected by immunohistochemistry.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 122 - 133
1 Feb 2021
He CP Jiang XC Chen C Zhang HB Cao WD Wu Q Ma C

Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2021;10(2):122–133.


Bone & Joint Research
Vol. 10, Issue 2 | Pages 134 - 136
1 Feb 2021
Im G

The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods.

Cite this article: Bone Joint Res 2021;10(2):134–136.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 85 - 95
27 Jan 2021
Akhbari P Jaggard MK Boulangé CL Vaghela U Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims. The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF. Methods. In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups. Results. A total of 16 metabolites were found in significantly different concentrations between the groups. Three were in higher relative concentrations (lipids, cholesterol, and N-acetylated molecules) and 13 in lower relative concentrations in the infected group (citrate, glycine, glycosaminoglycans, creatinine, histidine, lysine, formate, glucose, proline, valine, dimethylsulfone, mannose, and glutamine). Conclusion. Metabolites found in significantly greater concentrations in the infected cohort are markers of inflammation and infection. They play a role in lipid metabolism and the inflammatory response. Those found in significantly reduced concentrations were involved in carbohydrate metabolism, nucleoside metabolism, the glutamate metabolic pathway, increased oxidative stress in the diseased state, and reduced articular cartilage breakdown. This is the first study to demonstrate differences in the metabolic profile of infected and noninfected human SF, using a noninfected matched cohort, and may represent putative biomarkers that form the basis of new diagnostic tests for infected SF. Cite this article: Bone Joint Res 2021;10(1):85–95


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 164 - 169
1 Jan 2021
O'Leary L Jayatilaka L Leader R Fountain J

Aims

Patients who sustain neck of femur fractures are at high risk of malnutrition. Our intention was to assess to what extent malnutrition was associated with worse patient outcomes.

Methods

A total of 1,199 patients with femoral neck fractures presented to a large UK teaching hospital over a three-year period. All patients had nutritional assessments performed using the Malnutrition Universal Screening Tool (MUST). Malnutrition risk was compared to mortality, length of hospital stay, and discharge destination using logistic regression. Adjustments were made for covariates to identify whether malnutrition risk independently affected these outcomes.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


Bone & Joint Research
Vol. 9, Issue 12 | Pages 857 - 869
1 Dec 2020
Slullitel PA Coutu D Buttaro MA Beaule PE Grammatopoulos G

As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells.

Cite this article: Bone Joint Res 2020;9(12):857–869.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 675 - 688
1 Oct 2020
Shao L Gou Y Fang J Hu Y Lian Q Zhang Y Wang Y Tian F Zhang L

Aims

Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process.

Methods

Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 μg/kg/day or 40 μg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims

Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold.

Methods

Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 524 - 530
1 Aug 2020
Li S Mao Y Zhou F Yang H Shi Q Meng B

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of bone strength, makes the bone brittle, and raises the possibility of bone fracture. However, the exact mechanism that determines the progression of OP remains to be underlined. There are hundreds of trillions of symbiotic bacteria living in the human gut, which have a mutually beneficial symbiotic relationship with the human body that helps to maintain human health. With the development of modern high-throughput sequencing (HTS) platforms, there has been growing evidence that the gut microbiome may play an important role in the programming of bone metabolism. In the present review, we discuss the potential mechanisms of the gut microbiome in the development of OP, such as alterations of bone metabolism, bone mineral absorption, and immune regulation. The potential of gut microbiome-targeted strategies in the prevention and treatment of OP was also evaluated.

Cite this article: Bone Joint Res 2020;9(8):524–530.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 108 - 119
1 Mar 2020
Akhbari P Karamchandani U Jaggard MKJ Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims

Metabolic profiling is a top-down method of analysis looking at metabolites, which are the intermediate or end products of various cellular pathways. Our primary objective was to perform a systematic review of the published literature to identify metabolites in human synovial fluid (HSF), which have been categorized by metabolic profiling techniques. A secondary objective was to identify any metabolites that may represent potential biomarkers of orthopaedic disease processes.

Methods

A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines using the MEDLINE, Embase, PubMed, and Cochrane databases. Studies included were case series, case control series, and cohort studies looking specifically at HSF.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 36 - 48
1 Jan 2020
González-Chávez SA Pacheco-Tena C Quiñonez-Flores CM Espino-Solis GP Burrola-De Anda JI Muñoz-Morales PM

Aims

To assess the effect of physical exercise (PE) on the histological and transcriptional characteristics of proteoglycan-induced arthritis (PGIA) in BALB/c mice.

Methods

Following PGIA, mice were subjected to treadmill PE for ten weeks. The tarsal joints were used for histological and genetic analysis through microarray technology. The genes differentially expressed by PE in the arthritic mice were obtained from the microarray experiments. Bioinformatic analysis in the DAVID, STRING, and Cytoscape bioinformatic resources allowed the association of these genes in biological processes and signalling pathways.


Bone & Joint Research
Vol. 8, Issue 12 | Pages 582 - 592
1 Dec 2019
Sansone V Applefield RC De Luca P Pecoraro V Gianola S Pascale W Pascale V

Aims

The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice.

Methods

A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported.


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives

The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration.

Methods

In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 405 - 413
1 Aug 2019
Huang J Bao X Xia W Zhu L Zhang J Ma J Jiang N Yang J Chen Q Jing T Liu J Ma D Xu G

Objectives

X-linked hypophosphataemic rickets (XLHR) is a disease of impaired bone mineralization characterized by hypophosphataemia caused by renal phosphate wasting. The main clinical manifestations of the disorder are O-shaped legs, X-shaped legs, delayed growth, and bone pain. XLHR is the most common inheritable form of rickets, with an incidence of 1/20 000 in humans. It accounts for approximately 80% of familial cases of hypophosphataemia and serves as the prototype of defective tubular phosphate (PO43+) transport, due to extra renal defects resulting in unregulated FGF23 activity. XLHR is caused by loss-of-function mutations in the PHEX gene. The aim of this research was to identify the genetic defect responsible for familial hypophosphataemic rickets in a four-generation Chinese Han pedigree and to analyze the function of this mutation.

Methods

The genome DNA samples of all members in the pedigree were extracted from whole blood. We sequenced all exons of the PHEX and FGF23 genes, as well as the adjacent splice site sequence with Sanger sequencing. Next, we analyzed the de novo mutation c.1692 del A of the PHEX gene with an online digital service and investigated the mutant PHEX with SWISS-MODEL, immunofluorescence, and protein stability detection.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 397 - 404
1 Aug 2019
Osagie-Clouard L Sanghani-Kerai A Coathup M Meeson R Briggs T Blunn G

Objectives

Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1).

Methods

Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims

Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years.

Patients and Methods

A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 494 - 500
1 Jul 2018
Jiang L Zhu X Rong J Xing B Wang S Liu A Chu M Huang G

Objectives

Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA.

Methods

We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 373 - 378
1 May 2018
Johnson-Lynn SE McCaskie AW Coll AP Robinson AHN

Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration.

Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy.

It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis.

Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14).

Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process.

An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.

Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373–378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 289 - 297
1 Apr 2018
Sanghani-Kerai A Osagie-Clouard L Blunn G Coathup M

Objectives

This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis.

Methods

Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation.

Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 58 - 68
1 Jan 2018
Portal-Núñez S Ardura JA Lozano D Martínez de Toda I De la Fuente M Herrero-Beaumont G Largo R Esbrit P

Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H. 2. O. 2. )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H. 2. O. 2. on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion. These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1286 - 1289
1 Oct 2017
Rajpura A Board TN Siney PD Wynn Jones H Williams S Dabbs L Wroblewski BM

Aims

Our aim in this study was to describe a continuing review of 11 total hip arthroplasties using 22.225 mm Alumina ceramic femoral heads on a Charnley flanged femoral component, articulating against a silane crosslinked polyethylene.

Patients and Methods

Nine patients (11 THAs) were reviewed at a mean of 27.5 years (26 to 28) post-operatively. Outcome was assessed using the d’Aubigne and Postel, and Charnley scores and penetration was recorded on radiographs. In addition, the oxidation of a 29-year-old shelf-aged acetabular component was analysed.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 414 - 422
1 Jul 2017
Phetfong J Tawonsawatruk T Seenprachawong K Srisarin A Isarankura-Na-Ayudhya C Supokawej A

Objectives

Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs.

Methods

Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS).


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 577 - 584
1 May 2017
Nebergall AK Greene ME Laursen MB Nielsen PT Malchau H Troelsen A

Aims

The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using radiostereometric analysis.

Patients and Methods

Patients scheduled for total hip arthroplasty (THA) were randomised to receive either the study E1 (32 patients) or the control ArComXL polyethylene (35 patients). The median age (range) of the overall cohort was 66 years (40 to 76).


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives. Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J. Russell, C. L. Mendias. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017;6:57–65. DOI: 10.1302/2046-3758.61.BJR-2016-0232.R1


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives

In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis.

Methods

We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 560 - 568
1 Nov 2016
Peeters M Huang CL Vonk LA Lu ZF Bank RA Helder MN Doulabi BZ

Objectives. Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods. Tissue samples such as the nucleus pulposus (NP), annulus fibrosus (AF), articular cartilage (AC) and meniscus, were collected from goats and homogenised by either the MagNA Lyser or Freezer Mill. RNA of duplicate samples was subsequently isolated by either TRIzol (benchmark), or the RNeasy Lipid Tissue, RNeasy Fibrous Tissue, or Aurum Total RNA Fatty and Fibrous Tissue kits. RNA yield, purity, and integrity were determined and gene expression levels of type II collagen and aggrecan were measured by real-time PCR. Results. No differences between the two homogenisation methods were found. RNA isolation using the RNeasy Fibrous and Lipid kits resulted in the purest RNA (A260/A280 ratio), whereas TRIzol isolations resulted in RNA that is not as pure, and show a larger difference in gene expression of duplicate samples compared with both RNeasy kits. The Aurum kit showed low reproducibility. Conclusion. For the extraction of high-quality RNA from cartilaginous structures, we suggest homogenisation of the samples by the MagNA Lyser. For AC, NP and AF we recommend the RNeasy Fibrous kit, whereas for the meniscus the RNeasy Lipid kit is advised. Cite this article: M. Peeters, C. L. Huang, L. A. Vonk, Z. F. Lu, R. A. Bank, M. N. Helder, B. Zandieh Doulabi. Optimisation of high-quality total ribonucleic acid isolation from cartilaginous tissues for real-time polymerase chain reaction analysis. Bone Joint Res 2016;5:560–568. DOI: 10.1302/2046-3758.511.BJR-2016-0033.R3


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1389 - 1394
1 Oct 2016
Butt U Rashid MS Temperley D Crank S Birch A Freemont AJ Trail IA

Aims

The aim of this study was to analyse human muscle tissue before and after rotator cuff repair to look for evidence of regeneration, and to characterise the changes seen in the type of muscle fibre.

Patients and Methods

Patients were assessed pre-operatively and one year post-operatively using the Oxford Shoulder Score (OSS) and MRI. The cross-sectional area and distribution of the type of muscle fibre were assessed on biopsies, which were taken at surgery and one year post-operatively. Paired samples from eight patients were analysed. There were three men and five women with a mean age of 63 years (50 to 73).


Bone & Joint Research
Vol. 5, Issue 10 | Pages 461 - 469
1 Oct 2016
Liu YK Deng XX Yang H

Objectives

The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms.

Methods

Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 393 - 402
1 Sep 2016
Yang Z Liu H Li D Xie X Qin T Ma J Kang P

Objectives

The primary purpose of this meta-analysis was to determine whether statin usage could reduce the risk of glucocorticoid-related osteonecrosis in animal models.

Methods

A systematic literature search up to May 2015 was carried out using the PubMed, Ovid, EBM reviews, ISI Web of Science, EBSCO, CBM, CNKI databases with the term and boolean operators: statins and osteonecrosis in all fields. Risk ratio (RR), as the risk estimate of specific outcome, was calculated along with 95% confidence intervals (CI). The methodological quality of individual studies was assessed using a quantitative tool based on the updated Stroke Therapy Academic Industry Roundtable (STAIR) recommendations.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 961 - 968
1 Jul 2016
Tatebe M Iwatsuki K Hirata H Oguchi T Tanaka K Urata S

Aims

Chronic conditions of the wrist may be difficult to manage because pain and psychiatric conditions are correlated with abnormal function of the hand. Additionally, intra-articular inflammatory cytokines may cause pain.

We aimed to validate the measurement of inflammatory cytokines in these conditions and identify features associated with symptoms.

Patients and Methods

The study included 38 patients (18 men, 20 women, mean age 43 years) with a chronic condition of the wrist who underwent arthroscopy. Before surgery, the Self-Rating Depression Scale (SDS), Hand20 questionnaire and a visual analogue scale (VAS) for pain were used. Cytokine and chemokine levels in the synovial fluid of the wrist were measured using enzyme-linked immunosorbent assays and correlations between the levels with pain were analysed. Gene expression profiles of the synovial membranes were assessed using quantitative polymerase chain reaction.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1683 - 1692
1 Dec 2015
Patel A James SL Davies AM Botchu R

The widespread use of MRI has revolutionised the diagnostic process for spinal disorders. A typical protocol for spinal MRI includes T1 and T2 weighted sequences in both axial and sagittal planes. While such an imaging protocol is appropriate to detect pathological processes in the vast majority of patients, a number of additional sequences and advanced techniques are emerging. The purpose of the article is to discuss both established techniques that are gaining popularity in the field of spinal imaging and to introduce some of the more novel ‘advanced’ MRI sequences with examples to highlight their potential uses.

Cite this article: Bone Joint J 2015;97-B:1683–92.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1405 - 1410
1 Oct 2015
Fu J Song K Zhang YG Zheng GQ Zhang GY Liu C Wang Y

Cardiac disease in patients with ankylosing spondylitis (AS) has previously been studied but not in patients with a kyphosis or in those who have undergone an operation to correct it.

The aim of this study was to measure the post-operative changes in cardiac function of patients with an AS kyphosis after pedicle subtraction osteotomy (PSO).

The original cohort consisted of 39 patients (33 men, six women). Of these, four patients (two men, two women) were lost to follow-up leaving 35 patients (31 men, four women) to study. The mean age of the remaining patients was 37.4 years (22.3 to 47.8) and their mean duration of AS was 17.0 years (4.6 to 26.4). Echocardiographic measurements, resting heart rate (RHR), physical function score (PFS), and full-length standing spinal radiographs were obtained before surgery and at the two-year follow-up.

The mean pre-operative RHR was 80.2 bpm (60.6 to 112.3) which dropped to a mean of 73.7 bpm (60.7 to 90.6) at the two-year follow-up (p = 0.0000). Of 15 patients with normal ventricular function pre-operatively, two developed mild left ventricular diastolic dysfunction (LVDD) at the two-year follow-up. Of 20 patients with mild LVDD pre-operatively only five had this post-operatively. Overall, 15 patients had normal LV diastolic function before their operation and 28 patients had normal LV function at the two-year follow-up.

The clinical improvement was 15 out of 20 (75.0%): cardiac function in patients with AS whose kyphosis was treated by PSO was significantly improved.

Cite this article: Bone Joint J 2015;97-B:1405–10.


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 434 - 441
1 Apr 2015
Shabani F Farrier AJ Krishnaiyan R Hunt C Uzoigwe CE Venkatesan M

Drug therapy forms an integral part of the management of many orthopaedic conditions. However, many medicines can produce serious adverse reactions if prescribed inappropriately, either alone or in combination with other drugs. Often these hazards are not appreciated. In response to this, the European Union recently issued legislation regarding safety measures which member states must adopt to minimise the risk of errors of medication.

In March 2014 the Medicines and Healthcare products Regulatory Agency and NHS England released a Patient Safety Alert initiative focussed on errors of medication. There have been similar initiatives in the United States under the auspices of The National Coordinating Council for Medication Error and The Joint Commission on the Accreditation of Healthcare Organizations. These initiatives have highlighted the importance of informing and educating clinicians.

Here, we discuss common drug interactions and contra-indications in orthopaedic practice. This is germane to safe and effective clinical care.

Cite this article: Bone Joint J 2015;97-B:434–41.


Bone & Joint 360
Vol. 4, Issue 1 | Pages 32 - 33
1 Feb 2015

The February 2015 Research Roundup360 looks at: Markers of post-traumatic ankle arthritis; Mangoes, trees and Solomon Islanders; Corticosteroid injection and ulnar neuropathy; Moral decision-making: the secret skill?; Biomechanical studies under the spotlight; Anaesthetic risk and hip replacement


Bone & Joint Research
Vol. 3, Issue 9 | Pages 262 - 272
1 Sep 2014
Gumucio J Flood M Harning J Phan A Roche S Lynch E Bedi A Mendias C

Objectives . Rotator cuff tears are among the most common and debilitating upper extremity injuries. Chronic cuff tears result in atrophy and an infiltration of fat into the muscle, a condition commonly referred to as ‘fatty degeneration’. While stem cell therapies hold promise for the treatment of cuff tears, a suitable immunodeficient animal model that could be used to study human or other xenograft-based therapies for the treatment of rotator cuff injuries had not previously been identified. Methods . A full-thickness, massive supraspinatus and infraspinatus tear was induced in adult T-cell deficient rats. We hypothesised that, compared with controls, 28 days after inducing a tear we would observe a decrease in muscle force production, an accumulation of type IIB fibres, and an upregulation in the expression of genes involved with muscle atrophy, fibrosis and inflammation. Results . Chronic cuff tears in nude rats resulted in a 30% to 40% decrease in muscle mass, a 23% reduction in production of muscle force, and an induction of genes that regulate atrophy, fibrosis, lipid accumulation, inflammation and macrophage recruitment. Marked large lipid droplet accumulation was also present. Conclusions . The extent of degenerative changes in nude rats was similar to what was observed in T-cell competent rats. T cells may not play an important role in regulating muscle degeneration following chronic muscle unloading. The general similarities between nude and T-cell competent rats suggest the nude rat is likely an appropriate preclinical model for the study of xenografts that have the potential to enhance the treatment of chronically torn rotator cuff muscles. Cite this article: Bone Joint Res 2014;3:262–72


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 259 - 262
1 Feb 2014
Guo KJ Zhao FC Guo Y Li FL Zhu L Zheng W

Corticosteroid use has been implicated in the development of osteonecrosis of the femoral head (ONFH). The exact mechanism and predisposing factors such as age, gender, dosage, type and combination of steroid treatment remain controversial. Between March and July 2003, a total of 539 patients with severe acute respiratory syndrome (SARS) were treated with five different types of steroid. There were 129 men (24%) and 410 women (76%) with a mean age of 33.7 years (21 to 59). Routine screening was undertaken with radiographs, MRI and/or CT to determine the incidence of ONFH.

Of the 129 male patients with SARS, 51 (39.5%) were diagnosed as suffering from ONFH, compared with only 79 of 410 female patients (19.3%). The incidence of ONFH in the patients aged between 20 and 49 years was much higher than that of the group aged between 50 and 59 years (25.9% (127 of 491) versus 6.3% (3 of 48); p = 0.018). The incidence of ONFH in patients receiving one type of steroid was 12.5% (21 of 168), which was much lower than patients receiving two different types (28.6%; 96 of 336) or three different types of steroid (37.1%; 13 of 35).

Cite this article: Bone Joint J 2014;96-B:259–62.


Bone & Joint 360
Vol. 3, Issue 1 | Pages 25 - 27
1 Feb 2014

The February 2014 Shoulder & Elbow Roundup360 looks at: whether arthroscopic acromioplasty is a cost-effective intervention; shockwave therapy in cuff tear; whether microfracture relieves short-term pain in cuff repair; the promising early results from L-PRF augmented cuff repairs; rehabilitation following cuff repair; supination strength following biceps tendon rupture; whether longer is better in humeral components; fatty degeneration in a rodent model; and the controversial acromioclavicular joint dislocation.


Bone & Joint 360
Vol. 3, Issue 1 | Pages 46 - 46
1 Feb 2014

The February 2014 Research Roundup360 looks at: blood supply to the femoral head after dislocation; diabetes and hip replacement; bone remodelling over two decades following hip replacement; sham surgery as good as arthroscopic meniscectomy; distraction in knee osteoarthritis; whether joint replacement prevent cardiac events; tranexamic acid and knee replacement haemostasis; cartilage colonisation in bipolar ankle grafts; CTs and proof of fusion; atorvastatin for muscle re-innervation after sciatic nerve transection; microfracture and short-term pain in cuff repair; promising early results from L-PRF augmented cuff repairs; and fatty degeneration in a rodent model.


Bone & Joint Research
Vol. 3, Issue 2 | Pages 38 - 47
1 Feb 2014
Hogendoorn S Duijnisveld BJ van Duinen SG Stoel BC van Dijk JG Fibbe WE Nelissen RGHH

Objectives

Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps.

Methods

Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 320 - 325
1 Mar 2013
Fukushima W Yamamoto T Takahashi S Sakaguchi M Kubo T Iwamoto Y Hirota Y

The systemic use of steroids and habitual alcohol intake are two major causative factors in the development of idiopathic osteonecrosis of the femoral head (ONFH). To examine any interaction between oral corticosteroid use and alcohol intake on the risk of ONFH, we conducted a hospital-based case-control study of 71 cases with ONFH (mean age 45 years (20 to 79)) and 227 matched controls (mean age 47 years (18 to 79)). Alcohol intake was positively associated with ONFH among all subjects: the adjusted odds ratio (OR) of subjects with ≥ 3032 drink-years was 3.93 (95% confidence interval (CI) 1.18 to 13.1) compared with never-drinkers. When stratified by steroid use, the OR of such drinkers was 11.1 (95% CI 1.30 to 95.5) among those who had never used steroids, but 1.10 (95% CI 0.21 to 4.79) among those who had. When we assessed any interaction based on a two-by-two table of alcohol and steroid use, the OR of those non-drinkers who did use steroids was markedly elevated (OR 31.5) compared with users of neither. However, no further increase in OR was noted for the effect of using both (OR 31.6). We detected neither a multiplicative nor an additive interaction (p for multiplicative interaction 0.19; synergy index 0.95), suggesting that the added effect of alcohol may be trivial compared with the overwhelming effect of steroids in the development of ONFH.

Cite this article: Bone Joint J 2013;95-B:320–5.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives

Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis.

Methods

Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1024 - 1031
1 Aug 2012
Rajasekaran S Kanna RM Shetty AP

The identification of the extent of neural damage in patients with acute or chronic spinal cord injury is imperative for the accurate prediction of neurological recovery. The changes in signal intensity shown on routine MRI sequences are of limited value for predicting functional outcome. Diffusion tensor imaging (DTI) is a novel radiological imaging technique which has the potential to identify intact nerve fibre tracts, and has been used to image the brain for a variety of conditions. DTI imaging of the spinal cord is currently only a research tool, but preliminary studies have shown that it holds considerable promise in predicting the severity of spinal cord injury.

This paper briefly reviews our current knowledge of this technique.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 856 - 862
1 Jun 2012
Piper SL Laron D Manzano G Pattnaik T Liu X Kim HT Feeley BT

Peri-tendinous injection of local anaesthetic, both alone and in combination with corticosteroids, is commonly performed in the treatment of tendinopathies. Previous studies have shown that local anaesthetics and corticosteroids are chondrotoxic, but their effect on tenocytes remains unknown. We compared the effects of lidocaine and ropivacaine, alone or combined with dexamethasone, on the viability of cultured bovine tenocytes. Tenocytes were exposed to ten different conditions: 1) normal saline; 2) 1% lidocaine; 3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone (dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex; and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery period, the viability of the tenocytes was quantified using the CellTiter-Glo viability assay and fluorescence-activated cell sorting (FACS) for live/dead cell counts. A 30-minute exposure to lidocaine alone was significantly toxic to the tenocytes in a dose-dependent manner, but a 30-minute exposure to ropivacaine or dexamethasone alone was not significantly toxic.

Dexamethasone potentiated ropivacaine tenocyte toxicity at higher doses of ropivacaine, but did not potentiate lidocaine tenocyte toxicity. As seen in other cell types, lidocaine has a dose-dependent toxicity to tenocytes but ropivacaine is not significantly toxic. Although dexamethasone alone is not toxic, its combination with 0.5% ropivacaine significantly increased its toxicity to tenocytes. These findings might be relevant to clinical practice and warrant further investigation.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 441 - 445
1 Apr 2012
Chou DTS Achan P Ramachandran M

The World Health Organization (WHO) launched the first Global Patient Safety Challenge in 2005 and introduced the ‘5 moments of hand hygiene’ in 2009 in an attempt to reduce the burden of health care associated infections. Many NHS trusts in England adopted this model of hand hygiene, which prompts health care workers to clean their hands at five distinct stages of caring for the patient. Our review analyses the scientific foundation for the five moments of hand hygiene and explores the evidence, as referenced by WHO, to support these recommendations. We found no strong scientific support for this regime of hand hygiene as a means of reducing health care associated infections. Consensus-based guidelines based on weak scientific foundations should be assessed carefully to prevent shifting the clinical focus from more important issues and to direct limited resources more effectively.

We recommend caution in the universal adoption of the WHO ‘5 moments of hand hygiene’ by orthopaedic surgeons and other health care workers and emphasise the need for evidence-based principles when adopting hospital guidelines aimed at promoting excellence in clinical practice.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 297 - 301
1 Mar 2012
Haddad FS Konan S

An international faculty of orthopaedic surgeons presented their work on the current challenges in hip surgery at the London Hip Meeting which was attended by over 400 delegates. The topics covered included femoroacetabular impingement, thromboembolic phenomena associated with hip surgery, bearing surfaces (including metal-on-metal articulations), outcomes of hip replacement surgery and revision hip replacement. We present a concise report of the current opinions on hip surgery from this meeting with appropriate references to the current literature.


Bone & Joint 360
Vol. 1, Issue 1 | Pages 24 - 26
1 Feb 2012


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1201 - 1209
1 Sep 2011
Peng K Hsu W Shih H Hsieh C Huang T Hsu RW Chang P

In this study of 41 patients, we used proteomic, Western blot and immunohistochemical analyses to show that several reactive oxygen species scavenging enzymes are expressed differentially in patients with primary osteoarthritis and those with non-loosening and aseptic loosening after total hip replacement (THR). The patients were grouped as A (n = 16, primary THR), B (n = 10, fixed THR but requiring revision for polyethylene wear) and C (n = 15, requiring revision due to aseptic loosening) to verify the involvement of the identified targets in aseptic loosening. When compared with Groups A and B, Group C patients exhibited significant up-regulation of transthyretin and superoxide dismutase 3, but down-regulation of glutathione peroxidase 2 in their hip synovial fluids. Also, higher levels of superoxide dismutase 2 and peroxiredoxin 2, but not superoxide dismutase 1, catalase and glutathione perioxidase 1, were consistently detected in the hip capsules of Group C patients.

We propose that dysregulated reactive oxygen species-related enzymes may play an important role in the pathogenesis and progression of aseptic loosening after THR.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 517 - 524
1 Apr 2011
Cox G McGonagle D Boxall SA Buckley CT Jones E Giannoudis PV

The scarcity of mesenchymal stem cells (MSCs) in iliac crest bone marrow aspirate (ICBMA), and the expense and time in culturing cells, has led to the search for alternative harvest sites. The reamer-irrigation-aspirator (RIA) provides continuous irrigation and suction during reaming of long bones. The aspirated contents pass via a filter, trapping bony fragments, before moving into a ‘waste’ bag from which MSCs have been previously isolated. We examined the liquid and solid phases, performed a novel digestion of the solid phase, and made a comparative assessment in terms of number, phenotype and differentiation capacity with matched ICBMA.

The solid fraction from the filtrate was digested for 60 minutes at 37°C with collagenase. Enumeration was performed via the colony-forming unit fibroblast (CFU-F) assay. Passage (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages, and their phenotypes assessed using flow cytometry (CD33, CD34, CD45, CD73, CD90, and CD105).

MSCs from the RIA phases were able to differentiate at least as well as those from ICBMA, and all fractions had phenotypes consistent with other established sources. The median number of colonies for the three groups was: ICBMA = 8.5 (2 to 86), RIA-liquid = 19.5 (4 to 90), RIA-solid = 109 (67 to 200) per 200 μl. The mean total yield of cells for the three groups was: ICBMA = 920 (0 to 4275), RIA-liquid = 114 983 (16 500 to 477 750), RIA-solid = 12 785 (7210 to 28 475).

The RIA filtrate contains large numbers of MSCs that could potentially be extracted without enzymatic digestion and used for bone repair without prior cell expansion.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 370 - 377
1 Mar 2011
Chaudhury S Dicko C Burgess M Vollrath F Carr AJ

We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm. −1. to 1200 cm. −1. ), collagen (1300 cm. −1. to 1700 cm. −1. and 3000 cm. −1. to 3350 cm. −1. ) and lipids (2800 cm. −1. to 3000 cm. −1. ). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 617 - 623
1 May 2010
McNamara I Deshpande S Porteous M

The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using impaction grafting have been retrospectively reviewed. A 1:1 mixture of frozen, ground irradiated bone graft and Apapore 60, a synthetic bone graft substitute, was used in all cases. There were 13 complex primary and 37 revision procedures with a mean follow-up of five years (3.4 to 7.6). The clinical survival rate was 100%, with improvements in the mean Harris Hip Scores for pain and function. Radiologically, 30 acetabular grafts showed evidence of incorporation, ten had radiolucent lines and two acetabular components migrated initially before stabilising.

Acetabular reconstruction in both primary and revision surgery using a 1:1 mixture of frozen, ground, irriadiated bone and Apapore 60 appears to be a reliable method of managing acetabular defects. Longer follow-up will be required to establish whether this technique is as effective as using fresh-frozen allograft.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 580 - 585
1 Apr 2010
Shido Y Nishida Y Suzuki Y Kobayashi T Ishiguro N

We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia.

The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1623 - 1627
1 Dec 2009
Bubbar V Heras FL Amato D Pritzker KPH Gross AE

Total hip replacement in patients with Gaucher’s disease with symptomatic osteonecrosis of the femoral head is controversial because of the high early failure rates. We describe four patients who had an uncemented total hip replacement following enzyme replacement therapy for a median of two years and one month (1 to 9.8 years) prior to surgery, and who remained on treatment. At operation, the bone had a normal appearance and consistency. Histopathological examination showed that, compared with previous biopsies of untreated Gaucher’s disease, the Gaucher cell infiltrate had decreased progressively with therapy, being replaced by normal adipose tissue. The surfaces of viable bone beyond the osteonecrotic areas showed osteoblasts, indicating remodelling. In one case acetabular revision was carried out after 11 years and eight months. The three remaining patients had a mean follow-up of six years and four months (3.3 to 12 years). We recommend initiating enzyme replacement therapy at least one to two years prior to total hip replacement to facilitate bone remodelling and to allow implantation of uncemented components in these young patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 968 - 971
1 Jul 2009
Scagnelli R Bianco G Imarisio D

We describe a 63-year-old man who had xanthomatosis of the right tendo Achillis. He had undergone excision of the left tendo Achillis 17 years earlier without reconstruction for the same condition. The neurological history and examination were normal. Blood investigations showed hypercholestrolaemia, for which he was being treated with statins.

He was referred with pain in the right tendo Achillis and problems with footwear.

He was treated by excision of the right tendo Achillis, the xanthomatous nodules and the involved skin, followed by reconstruction with a cadaver bone-tendon graft. At follow-up eight months postoperatively, the scar had healed well. He walked without pain and could wear any type of shoe. Plain radiographs showed that the bone graft had healed. The American Orthopaedic Foot and Ankle Society hindfoot score was 95/100. The patient’s subjective evaluation of the result was very good.