This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
The February 2024 Spine Roundup360 looks at: Surgeon assessment of bone – any good?; Robotics reduces radiation exposure in some spinal surgery; Interbody fusion cage versus anterior lumbar interbody fusion with posterior instrumentation; Is robotic-assisted pedicle screw placement an answer to the learning curve?; Acute non-traumatic spinal subarachnoid haematomas: a report of five cases and a systematic review of the literature; Is L4-L5 lateral interbody fusion safe and effective?
The aim of this study was to determine both the incidence of, and the reoperation rate for, postoperative periprosthetic femoral fracture (POPFF) after total hip arthroplasty (THA) with either a collared cementless (CC) femoral component or a cemented polished taper-slip (PTS) femoral component. We performed a retrospective review of a consecutive series of 11,018 THAs over a ten-year period. All POPFFs were identified using regional radiograph archiving and electronic care systems.Aims
Methods
The December 2023 Oncology Roundup360 looks at: A single osteotomy technique for frozen autograft; Complications, function, and survival of tumour-devitalized autografts used in patients with limb-sparing surgery; Is liquid nitrogen recycled bone and vascular fibula the biological reconstruction of choice?; Solitary pulmonary metastases at first recurrence of osteosarcoma; Is a radiological score able to predict resection-grade chondrosarcoma in primary intraosseous lesions of the long bones?; Open versus core needle biopsy in lower-limb sarcoma – current practice patterns and patient outcomes; Natural history of intraosseous low-grade chondroid lesions of the proximal humerus; Local treatment modalities and event-free survival in patients with localized Ewing’s sarcoma; Awaiting biopsy results in solitary pathological proximal femoral fractures.
The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties.Aims
Methods
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.Aims
Methods
We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism. Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.Aims
Methods
This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay.Aims
Methods
Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is involved in the impairment of osteocytes’ GJIC. This study aims to investigate the effect of AOPP accumulation on osteocytes’ GJIC in aged male mice and its mechanism. Changes in AOPP levels, expression of connexin43 (Cx43), osteocyte network, and bone mass were detected in 18-month-old and three-month-old male mice. Cx43 expression, GJIC function, mitochondria membrane potential, reactive oxygen species (ROS) levels, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation were detected in murine osteocyte-like cells (MLOY4 cells) treated with AOPPs. The Cx43 expression, osteocyte network, bone mass, and mechanical properties were detected in three-month-old mice treated with AOPPs for 12 weeks.Aims
Methods
Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.Aims
Methods
Aims. To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results. iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion. iPTH treatment mediated successful osseointegration and increased
The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot.Aims
Methods
Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading.Aims
Methods
Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.Aims
Methods
Aims. Type 2 diabetes mellitus (T2DM) impairs
The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.Aims
Methods
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article:
The processes linking long-term bisphosphonate treatment to atypical fracture remain elusive. To establish a means of exploring this link, we have examined how long-term bisphosphonate treatment with prior ovariectomy modifies femur fracture behaviour and tibia mass and shape in murine bones. Three groups (seven per group) of 12-week-old mice were: 1) ovariectomized and 20 weeks thereafter treated weekly for 24 weeks with 100 μm/kg subcutaneous ibandronate (OVX+IBN); 2) ovariectomized (OVX); or 3) sham-operated (SHAM). Quantitative fracture analysis generated biomechanical properties for the femoral neck. Tibiae were microCT scanned and trabecular (proximal metaphysis) and cortical parameters along almost its whole length measured.Aims
Methods
Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of
Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component? A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.Aims
Methods
Many biomechanical studies have shown that the weakest biomechanical point of a rotator cuff repair is the suture-tendon interface at the medial row. We developed a novel double rip-stop (DRS) technique to enhance the strength at the medial row for rotator cuff repair. The objective of this study was to evaluate the biomechanical properties of the DRS technique with the conventional suture-bridge (SB) technique and to evaluate the biomechanical performance of the DRS technique with medial row knots. A total of 24 fresh-frozen porcine shoulders were used. The infraspinatus tendons were sharply dissected and randomly repaired by one of three techniques: SB repair (SB group), DRS repair (DRS group), and DRS with medial row knots repair (DRSK group). Specimens were tested to failure. In addition, 3 mm gap formation was measured and ultimate failure load, stiffness, and failure modes were recorded.Aims
Methods
Accurate estimations of the risk of fracture due to metastatic bone disease in the femur is essential in order to avoid both under-treatment and over-treatment of patients with an impending pathological fracture. The purpose of the current retrospective in vivo study was to use CT-based finite element analyses (CTFEA) to identify a clear quantitative differentiating factor between patients who are at imminent risk of fracturing their femur and those who are not, and to identify the exact location of maximal weakness where the fracture is most likely to occur. Data were collected on 82 patients with femoral metastatic bone disease, 41 of whom did not undergo prophylactic fixation. A total of 15 had a pathological fracture within six months following the CT scan, and 26 were fracture-free during the five months following the scan. The Mirels score and strain fold ratio (SFR) based on CTFEA was computed for all patients. A SFR value of 1.48 was used as the threshold for a pathological fracture. The sensitivity, specificity, positive, and negative predicted values for Mirels score and SFR predictions were computed for nine patients who fractured and 24 who did not, as well as a comparison of areas under the receiver operating characteristic curves (AUC of the ROC curves).Aims
Methods
To examine the relationship of sex steroid hormones with osteopenia in a nationally representative sample of men in the USA. Data on bone mineral density (BMD), serum sex hormones, dairy consumption, smoking status, and body composition were available for 806 adult male participants of the cross-sectional National Health and Nutrition Examination Survey (NHANES, 1999-2004). We estimated associations between quartiles of total and estimated free oestradiol (E2) and testosterone (T) and osteopenia (defined as 1 to 2.5 SD below the mean BMD for healthy 20- to 29-year-old men) by applying sampling weights and using multivariate-adjusted logistic regression. We then estimated the association between serum hormone concentrations and osteopenia by percentage of body fat, frequency of dairy intake, cigarette smoking status, age, and race/ethnicity.Aims
Methods
Up to 10% of fractures result in undesirable outcomes, for which female sex is a risk factor. Cellular sex differences have been implicated in these different healing processes. Better understanding of the mechanisms underlying bone healing and sex differences in this process is key to improved clinical outcomes. This study utilized a macrophage–mesenchymal stem cell (MSC) coculture system to determine: 1) the precise timing of proinflammatory (M1) to anti-inflammatory (M2) macrophage transition for optimal bone formation; and 2) how such immunomodulation was affected by male A primary murine macrophage-MSC coculture system was used to demonstrate the optimal transition time from M1 to M2 (polarized from M1 with interleukin (IL)-4) macrophages to maximize matrix mineralization in male and female MSCs. Outcome variables included Alizarin Red staining, alkaline phosphatase (ALP) activity, and osteocalcin protein secretion.Objectives
Methods
In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians. A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians.Objectives
Methods
The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.Objectives
Materials and Methods
Objectives. Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality. Methods. An in vitro model was used to examine the efficacy of two AGE-inhibitors, aminoguanidine (AG) and pyridoxamine (PM), on ageing human cortical bone. Mid-diaphyseal tibial cortical bone segments were obtained from female cadavers (n = 20, age range: 57 years to 97 years) and randomly subjected to one of four treatments: control; glucose only; glucose and AG; or glucose and PM. Following treatment, each specimen underwent mechanical testing under physiological conditions via reference point indentation, and AGEs were quantified by fluorescence. Results. Treatment with AG and PM showed a significant decrease in AGE content versus control groups, as well as a significant decrease in the change in indentation distance, a reliable parameter for analyzing
Hydroxyapatite coatings for uncemented fixation in total knee
arthroplasty can theoretically provide a long-lasting biological
interface with the host bone. The objective of this study was to
test this hypothesis with propriety hydroxyapatite, peri-apatite,
coated tibial components using component migration measured with radiostereometric
analysis over two years as an indicator of long-term fixation. A total of 29 patients at two centres received uncemented PA-coated
tibial components and were followed for two years with radiostereometric
analysis exams to quantify the migration of the component.Aims
Patients and Methods
Objectives. Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
Osteoporosis has become an increasing concern for older people as it may potentially lead to osteoporotic fractures. This study is designed to assess the efficacy and safety of ten therapies for post-menopausal women using network meta-analysis. We conducted a systematic search in several databases, including PubMed and Embase. A random-effects model was employed and results were assessed by the odds ratio (OR) and corresponding 95% confidence intervals (CI). Furthermore, with respect to each outcome, each intervention was ranked according to the surface under the cumulative ranking curve (SUCRA) value.Objectives
Methods
This systematic review aimed to assess the A systematic search was performed in Pubmed, followed by a two-step selection process. We included Objectives
Methods
Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.Objectives
Methods
This investigation sought to advance the work published in our prior biomechanical study ( A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio.Objectives
Materials and Methods
Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair.Objectives
Methods
Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.Objectives
Materials and Methods
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.
The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings.Objectives
Methods
We aimed to assess the influence of ethnicity on the incidence
of heterotopic ossification (HO) after total hip arthroplasty (THA). We studied the six-month post-operative anteroposterior radiographs
of 1449 consecutive primary THAs (1324 patients) and retrospectively
graded them for the presence of HO, using the Brooker Classification. Aims
Patients and Methods
There is an increased risk of fracture following
osteoplasty of the femoral neck for cam-type femoroacetabular impingement
(FAI). Resection of up to 30% of the anterolateral head–neck junction
has previously been considered to be safe, however, iatrogenic fractures
have been reported with resections within these limits. We re-evaluated
the amount of safe resection at the anterolateral femoral head–neck
junction using a biomechanically consistent model. In total, 28 composite bones were studied in four groups: control,
10% resection, 20% resection and 30% resection. An axial load was
applied to the adducted and flexed femur. Peak load, deflection
at time of fracture and energy to fracture were assessed using comparison
groups. There was a marked difference in the mean peak load to fracture
between the control group and the 10% resection group (p <
0.001).
The control group also tolerated significantly more deflection before
failure (p <
0.04). The mean peak load (p = 0.172), deflection
(p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between
the 10%, 20%, and 30% resection groups. Any resection of the anterolateral quadrant of the femoral head–neck
junction for FAI significantly reduces the load-bearing capacity
of the proximal femur. After initial resection of cortical bone,
there is no further relevant loss of stability regardless of the
amount of trabecular bone resected. Based on our findings we recommend any patients who undergo anterolateral
femoral head–neck junction osteoplasty should be advised to modify
their post-operative routine until cortical remodelling occurs to
minimise the subsequent fracture risk. Cite this article:
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement Cite this article:
There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and toughness of the
tibial diaphysis were calculated following four-point bending tests.Objectives
Methods
This paper investigates whether cortical comminution
and intra-articular involvement can predict displacement in distal
radius fractures by using a classification that includes volar comminution
as a separate parameter. A prospective multicentre study involving non-operative treatment
of distal radius fractures in 387 patients aged between 15 and 74
years (398 fractures) was conducted. The presence of cortical comminution
and intra-articular involvement according to the Buttazzoni classification
is described. Minimally displaced fractures were treated with immobilisation
in a cast while displaced fractures underwent closed reduction with
subsequent immobilisation. Radiographs were obtained after reduction,
at 10 to 14 days and after union. The outcome measure was re-displacement
or union. In fractures with volar comminution (Buttazzoni type 4), 96%
(53 of 55) displaced. In intra-articular fractures without volar
comminution (Buttazzoni 3), 72% (84 of 117) displaced. In extra-articular
fractures with isolated dorsal comminution (Buttazzoni 2), 73% (106
of 145) displaced while in non-comminuted fractures (Buttazzoni
1), 16 % (13 of 81 ) displaced. A total of 32% (53 of 165) of initially minimally displaced fractures
later displaced. All of the initially displaced volarly comminuted
fractures re-displaced. Displacement occurred in 31% (63 of 205)
of fractures that were still in good alignment after 10 to 14 days. Regression analysis showed that volar and dorsal comminution
predicted later displacement, while intra-articular involvement
did not predict displacement. Volar comminution was the strongest
predictor of displacement. Cite this article:
In 1999, we developed a technique for biological
reconstruction after excision of a bone tumour, which involved using
autografts of the bone containing the tumour treated with liquid
nitrogen. We have previously reported the use of this technique
in 28 patients at a mean follow up of 27 months (10 to 54). In this study, we included 72 patients who underwent reconstruction
using this technique. A total of 33 patients died and three were
lost to follow-up, at a mean of 23 months (2 to 56) post-operatively,
leaving 36 patients available for a assessment at a mean of 101
months 16 to 163) post-operatively. The methods of reconstruction included
an osteo-articular graft in 16, an intercalary in 13 and, a composite
graft with prosthesis in seven. Post-operative function was excellent in 26 patients (72.2%),
good in seven (19.4%), and fair in three (8.3%) according to the
functional evaluation system of Enneking. No recurrent tumour occurred
within the grafts. The autografts survived in 29 patients (80.6%),
and the rates of survival at five and ten years were 86.1% and 80.6
%, respectively. Seven of 16 osteo-articular grafts (44%) failed
because of fracture or infection, but all the composite and intercalary
grafts survived. The long-term outcomes of frozen autografting, particularly using
composite and intercalary grafts, are satisfactory and thus represent
a good method of treatment for patients with a sarcoma of bone or
soft tissue. Cite this article:
We analysed the effects of commonly used medications
on human osteoblastic cell activity in vitro, specifically proliferation
and tissue mineralisation. A list of medications was retrieved from
the records of patients aged >
65 years filed in the database of
the largest health maintenance organisation in our country (>
two
million members). Proliferation and mineralisation assays were performed
on the following drugs: rosuvastatin (statin), metformin (antidiabetic),
metoprolol (β-blocker), citalopram (selective serotonin reuptake
inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)).
All tested drugs significantly stimulated DNA synthesis to varying
degrees, with rosuvastatin 5 µg/ml being the most effective among
them (mean 225% ( Cite this article:
Fracture repair occurs by two broad mechanisms:
direct healing, and indirect healing with callus formation. The effects
of bisphosphonates on fracture repair have been assessed only in
models of indirect fracture healing. A rodent model of rigid compression plate fixation of a standardised
tibial osteotomy was used. Ten skeletally mature Sprague–Dawley
rats received daily subcutaneous injections of 1 µg/kg ibandronate
(IBAN) and ten control rats received saline (control). Three weeks
later a tibial osteotomy was rigidly fixed with compression plating.
Six weeks later the animals were killed. Fracture repair was assessed
with mechanical testing, radiographs and histology. The mean stress at failure in a four-point bending test was significantly
lower in the IBAN group compared with controls (8.69 Nmm-2 ( Bisphosphonate treatment in a therapeutic dose, as used for risk
reduction in fragility fractures, had an inhibitory effect on direct
fracture healing. We propose that bisphosphonate therapy not be
commenced until after the fracture has united if the fracture has
been rigidly fixed and is undergoing direct osteonal healing. Cite this article:
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article:
Osteoporosis is common and the health and financial
cost of fragility fractures is considerable. The burden of cardiovascular
disease has been reduced dramatically by identifying and targeting
those most at risk. A similar approach is potentially possible in
the context of fragility fractures. The World Health Organization
created and endorsed the use of FRAX, a fracture risk assessment
tool, which uses selected risk factors to calculate a quantitative,
patient-specific, ten-year risk of sustaining a fragility fracture.
Treatment can thus be based on this as well as on measured bone
mineral density. It may also be used to determine at-risk individuals,
who should undergo bone densitometry. FRAX has been incorporated
into the national osteoporosis guidelines of countries in the Americas,
Europe, the Far East and Australasia. The United Kingdom National
Institute for Health and Clinical Excellence also advocates its
use in their guidance on the assessment of the risk of fragility
fracture, and it may become an important tool to combat the health
challenges posed by fragility fractures.
Previously, we showed that case-specific non-linear
finite element (FE) models are better at predicting the load to failure
of metastatic femora than experienced clinicians. In this study
we improved our FE modelling and increased the number of femora
and characteristics of the lesions. We retested the robustness of
the FE predictions and assessed why clinicians have difficulty in
estimating the load to failure of metastatic femora. A total of
20 femora with and without artificial metastases were mechanically
loaded until failure. These experiments were simulated using case-specific
FE models. Six clinicians ranked the femora on load to failure and
reported their ranking strategies. The experimental load to failure
for intact and metastatic femora was well predicted by the FE models (R2 =
0.90 and R2 = 0.93, respectively). Ranking metastatic
femora on load to failure was well performed by the FE models (τ =
0.87), but not by the clinicians (0.11 <
τ <
0.42). Both the
FE models and the clinicians allowed for the characteristics of
the lesions, but only the FE models incorporated the initial bone
strength, which is essential for accurately predicting the risk
of fracture. Accurate prediction of the risk of fracture should
be made possible for clinicians by further developing FE models.
Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial lift-off and increased stability by reducing
micromotion. Longer stems may have disadvantages including stress
shielding along the length of the stem with associated reduction
in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic
fracture and end-of-stem pain. These features make long stems unattractive
in the primary TKR setting, but often desirable in revision surgery
with bone loss and instability. In the revision scenario, stems
are beneficial in order to convey structural stability to the construct
and protect the reconstruction of bony defects. Cemented and uncemented
long stemmed implants have different roles depending on the nature
of the bone loss involved. This review discusses the biomechanics of the design of tibial
components and stems to inform the selection of the component and
the technique of implantation.
This prospective multicentre study was undertaken
to determine whether the timing of the post-operative administration
of bisphosphonate affects fracture healing and the rate of complication
following an intertrochanteric fracture. Between August 2008 and
December 2009, 90 patients with an intertrochanteric fracture who
underwent internal fixation were randomised to three groups according
to the timing of the commencement of risedronate treatment after
surgery: Group A (from one week after surgery), Group B (from one
month after surgery), and Group C (from three months after surgery).
The radiological time to fracture healing was assessed as the primary
endpoint, and the incidence of complications, including excessive
displacement or any complication requiring revision surgery, as
the secondary endpoint. The mean time to fracture healing post-operatively
in groups A, B and C was 10.7 weeks ( This study demonstrates that the timing of the post-operative
administration of bisphosphonates does not appear to affect the
rate of healing of an intertrochanteric fracture or the incidence
of complications.
The June 2012 Research Roundup360 looks at: platelet-rich plasma; ageing, bone and mesenchymal stem cells; cytokines and the herniated intervertebral disc; ulcerative colitis, Crohn’s disease and anti-inflammatories; the effect of NSAIDs on bone healing; osteoporosis of the fractured hip; herbal medicine and recovery after acute muscle injury; and ultrasound and the time to fracture union.
This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity.Objectives
Methods
In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.
Extensive limb lengthening may be indicated in achondroplastic patients who wish to achieve a height within the normal range for their population. However, increasing the magnitude of lengthening is associated with further complications particularly adjacent joint stiffness and fractures. We studied the relationship between the magnitude of femoral lengthening and callus pattern, adjacent joint stiffness and fracture of the regenerate bone in 40 femoral lengthenings in 20 achondroplastic patients. They were divided into two groups; group A had lengthening of less than 50% and group B of more than 50% of their initial femoral length. The patterns of radiological callus formation were classified according to shape, type and features. The incidence of callus features, knee stiffness and regenerate bone fracture were analysed in the two groups. Group B was associated with an increased incidence of concave, lateral and central callus shapes, adjacent joint and stiffness and fracture. Statistically, the incidence of stiffness in adjacent joints and regenerate bone fracture was significantly associated with the magnitude of lengthening. We suggest that careful radiological assessment of the patterns of callus formation is a useful method for the evaluation and monitoring of regenerate bone.
Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised. Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.
We review the treatment of pelvic Ewing’s sarcoma by the implantation of extracorporeally-irradiated (ECI) autografts and compare the outcome with that of other reported methods. We treated 13 patients with ECI autografts between 1994 and 2004. There were seven males and six females with a median age of 15.7 years (interquartile range (IQR) 12.2 to 21.7). At a median follow-up of five years (IQR 1.8 to 7.4), the disease-free survival was 69% overall, and 75% if one patient with local recurrence after initial treatment elsewhere was excluded. Four patients died from distant metastases at a mean of 17 months (13 to 23). There were three complications which required operative intervention; one was a deep infection which required removal of the graft. The functional results gave a mean Musculoskeletal Tumor Society score of 85% (60% to 97%), a mean Toronto extremity salvage score of 86% (69% to 100%) and a mean Harris hip score of 92 (67 to 100). We conclude that ECI grafting is a suitable form of treatment for localised and resectable pelvic Ewing’s sarcoma.
We matched 78 patients with a loose cemented Charnley Elite Plus total hip replacement (THR) by age, gender, race, prosthesis and time from surgery with 49 patients with a well-fixed stable hip replacement, to determine if poor bone quality predisposes to loosening. Clinical, radiological, biomechanical and bone mineral density indicators of bone quality were assessed. Patients with loose replacements had more pain, were more likely to have presented with atrophic arthritis and to have a history of fragility fracture, narrower femoral cortices and lower peri-prosthetic or lumbar spine bone mineral density (all In this series of cemented hip replacements performed between 1994 and 1998, aseptic loosening was associated with poor bone quality. Patients with a THR should be screened for osteoporosis and have regular radiological surveillance.
We investigated the effect of locally administered bisphosphonate on distraction osteogenesis in a rabbit model and evaluated its systemic effect. An osteotomy on the right tibia followed by distraction for four weeks was performed on 47 immature rabbits. They were divided into seven equal groups, with each group receiving a different treatment regime. Saline and three types of dosage of alendronate (low, 0.75 μg/kg; mid, 7.5 μg/kg and high 75 μg/kg) were given by systemic injection in four groups, and saline and two dosages (low and mild) were delivered by local injection to the distraction gap in the remaining three groups. The injections were performed five times weekly during the period of distraction. After nine weeks the animals were killed and image analysis and mechanical testing were performed on the distracted right tibiae and the left tibiae which served as a control group. The local low-dose alendronate group showed a mean increase in bone mineral density of 124.3 mg/cm3 over the local saline group (analysis of variance, p <
0.05) without any adverse effect on the left control tibiae. The findings indicate that the administration of local low-dose alendronate could be an effective pharmacological means of improving bone formation in distraction osteogenesis.
We investigated several factors which affect the stability of cortical screws in osteoporotic bone using 18 femora from cadavers of women aged between 45 and 96 years (mean 76). We performed bone densitometry to measure the bone mineral density of the cortical and cancellous bone of the shaft and head of the femur, respectively. The thickness and overall bone mass of the cortical layer of the shaft of the femur were measured using a microCT scanner. The force required to pull-out a 3.5 mm titanium cortical bone screw was determined after standardised insertion into specimens of the cortex of the femoral shaft. A significant correlation was found between the pull-out strength and the overall bone mass of the cortical layer (r2 = 0.867, p <
0.01) and also between its thickness (r2 = 0.826, p <
0.01) and bone mineral density (r2 = 0.861, p <
0.01). There was no statistically significant correlation between the age of the donor and the pull-out force (p = 0.246), the cortical thickness (p = 0.199), the bone mineral density (p = 0.697) or the level of osteoporosis (p = 0.378). We conclude that the overall bone mass, the thickness and the bone mineral density of the cortical layer, are the main factors which affect the stability of a screw in human female osteoporotic cortical bone.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
We describe a method of reconstruction using tumour-bearing autograft treated by liquid nitrogen in 28 patients. The operative technique consisted of en bloc excision of the tumour, removal of soft tissue, curettage of the tumour, drilling and preparation for internal fixation or prosthetic replacement before incubation for 20 minutes in liquid nitrogen, thawing at room temperature for 15 minutes, thawing in distilled water for ten minutes, and internal fixation with an intramedullary nail, plate or composite use of prosthetic replacement. Bone graft or cement was used to augment
We aimed to highlight the relationship between age and the architectural properties of trabecular bone, to outline the patterns in which the variations in these properties take place, and to investigate the influence of the architecture on the mechanical properties of trabecular bone in growing animals. We studied 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. They were serially sectioned and their architectural properties were determined. Similar cubes were obtained from the identical anatomical position of the contralateral tibia and their compressive mechanical properties measured. The values obtained from the skeletally immature and mature individuals were compared. Multiple regression analyses were performed between the architectural and the mechanical properties. The bone volume fraction, the mean trabecular volume, the architectural and the mechanical anisotropy, the elastic modulus, the
Our aim was to determine the relationship between age and the mechanical and physical properties of trabecular bone, to describe the patterns in which the variations in these properties take place, and to investigate the influence of the physical properties on the mechanical characteristics of trabecular bone during growth. We used 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. We performed non-destructive compression tests of the specimens in three orthogonal directions and compression tests to failure in the axial direction. The physical properties of the specimens were also determined. The data were correlated with age and compared in skeletally immature and mature animals. Multiple regression analyses were performed between the mechanical and the physical properties. Age correlated positively with elastic modulus,
Cancer-induced bone diseases are often associated with increased bone resorption and pathological fractures. In recent years, osteoprotective agents such as bisphosphonates have been studied extensively and have been shown to inhibit cancer-related bone resorption in experimental and clinical studies. The third-generation bisphosphonate, ibandronate (BM 21.0955), is a potent compound for controlling tumour osteolysis and hypercalcaemia in rats bearing Walker 256 carcinosarcoma. We have studied the effect of ibandronate given as an interventional treatment on
There have been conflicting reports on the effects of gamma irradiation on the material properties of cortical allograft bone. To investigate changes which result from the method of preparation, test samples must be produced with similar mechanical properties to minimise variations other than those resulting from treatment. We describe a new method for the comparative measurement of
We compared, under laboratory conditions, the resistance to cutting out of the AO dynamic hip screw and the Pugh sliding nail. The mean load at cut out, adjusted for
One of the aims of this work was to find criteria by which the quality of bone as a supporting tissue might be judged. This inevitably involves discussion and, if possible, assessment, of the relative importance of the inorganic and organic material of the bone. It is relatively easy to measure the mineral content, and for that reason it has always received more than its due share of attention. In the present experiment the composition of the ash of all bones was remarkably constant, with a Ca/P ratio of 2. Furthermore, X-ray crystallography showed that the structure of the inorganic material was the same in all cases. The great difficulty of measuring variations in the quality of the organic material which is, of course, protein in nature makes it impossible to say how much it influences