Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
Bone & Joint Research
Vol. 8, Issue 10 | Pages 495 - 501
1 Oct 2019
Hampp EL Sodhi N Scholl L Deren ME Yenna Z Westrich G Mont MA

Objectives. The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual TKA (MTKA) approach. Methods. A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases. Results. Significantly less damage occurred to the PCLs in the RATKA versus the MTKA specimens (p < 0.001). RATKA specimens had non-significantly less damage to the deep medial collateral ligaments (p = 0.149), iliotibial bands (p = 0.580), poplitei (p = 0.248), and patellar ligaments (p = 0.317). The remaining anatomical structures had minimal soft-tissue damage in all MTKA and RATKA specimens. Conclusion. The results of this study indicate that less soft-tissue damage may occur when utilizing RATKA compared with MTKA. These findings are likely due to the enhanced preoperative planning with the robotic software, the real-time intraoperative feedback, and the haptically bounded saw blade, all of which may help protect the surrounding soft tissues and ligaments. Cite this article: Bone Joint Res 2019;8:495–501


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 322 - 332
1 Jun 2020
Zhao H Yeersheng R Kang X Xia Y Kang P Wang W

Aims

The aim of this study was to examine whether tourniquet use can improve perioperative blood loss, early function recovery, and pain after primary total knee arthroplasty (TKA) in the setting of multiple-dose intravenous tranexamic acid.

Methods

This was a prospective, randomized clinical trial including 180 patients undergoing TKA with multiple doses of intravenous tranexamic acid. One group was treated with a tourniquet during the entire procedure, the second group received a tourniquet during cementing, and the third group did not receive a tourniquet. All patients received the same protocol of intravenous tranexamic acid (20 mg/kg) before skin incision, and three and six hours later (10 mg/kg). The primary outcome measure was perioperative blood loss. Secondary outcome measures were creatine kinase (CK), CRP, interleukin-6 (IL-6), visual analogue scale (VAS) pain score, limb swelling ratio, quadriceps strength, straight leg raising, range of motion (ROM), American Knee Society Score (KSS), and adverse events.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 593 - 600
1 Sep 2020
Lee J Koh Y Kim PS Kang KW Kwak YH Kang K

Aims

Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA.

Methods

Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims

This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation.

Methods

In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert.


Bone & Joint Research
Vol. 8, Issue 10 | Pages 438 - 442
1 Oct 2019
Kayani B Haddad FS


Bone & Joint Research
Vol. 9, Issue 1 | Pages 15 - 22
1 Jan 2020
Clement ND Bell A Simpson P Macpherson G Patton JT Hamilton DF

Aims

The primary aim of the study was to compare the knee-specific functional outcome of robotic unicompartmental knee arthroplasty (rUKA) with manual total knee arthroplasty (mTKA) for the management of isolated medial compartment osteoarthritis. Secondary aims were to compare length of hospital stay, general health improvement, and satisfaction between rUKA and mTKA.

Methods

A powered (1:3 ratio) cohort study was performed. A total of 30 patients undergoing rUKA were propensity score matched to 90 patients undergoing mTKA for isolated medial compartment arthritis. Patients were matched for age, sex, body mass index (BMI), and preoperative function. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were collected preoperatively and six months postoperatively. The Forgotten Joint Score (FJS) and patient satisfaction were collected six months postoperatively. Length of hospital stay was also recorded.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives

Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method.

Methods

Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives

Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation.

Methods

The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives

Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA.

Methods

The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 468 - 475
1 Jul 2018
He Q Sun H Shu L Zhu Y Xie X Zhan Y Luo C

Objectives

Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality.

Methods

Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 327 - 335
1 May 2018
Sato Y Akagi R Akatsu Y Matsuura Y Takahashi S Yamaguchi S Enomoto T Nakagawa R Hoshi H Sasaki T Kimura S Ogawa Y Sadamasu A Ohtori S Sasho T

Objectives

To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model.

Methods

Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 280 - 286
1 Jul 2016
Ozkurt B Sen T Cankaya D Kendir S Basarır K Tabak Y

Objectives

The purpose of this study was to develop an accurate, reliable and easily applicable method for determining the anatomical location of the joint line during revision knee arthroplasty.

Methods

The transepicondylar width (TEW), the perpendicular distance between the medial and lateral epicondyles and the distal articular surfaces (DMAD, DLAD) and the distance between the medial and lateral epicondyles and the posterior articular surfaces (PMAD, DLAD) were measured in 40 knees from 20 formalin-fixed adult cadavers (11 male and nine female; mean age at death 56.9 years, sd 9.4; 34 to 69). The ratios of the DMAD, PMAD, DLAD and PLAD to TEW were calculated.


Objectives

Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA.

Methods

We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions.


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives

Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions.

Methods

Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 535 - 541
1 Sep 2017
Zan P Mol MO Yao JJ Fan L Yang D Liu K Li G

Objectives

The length of the tourniquet time during total knee arthroplasty (TKA) is related to the incidence of post-operative deep vein thrombosis (DVT). Our aim in this study was to investigate the effect of the early release of the tourniquet on the incidence of DVT in patients undergoing TKA.

Methods

A total of 200 patients who underwent TKA between November 2015 and November 2016 were prospectively enrolled. The tourniquet was inflated before surgery and released immediately after the introduction of the components (early release group). This group was compared with a retrospective cohort of 200 primary TKAs, in which the tourniquet was released after the dressings had been applied (late release group). The presence of a DVT was detected using bilateral lower limb ultrasonography. Peri-operative clinical and follow-up data were collected for analysis.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 294 - 300
1 Jul 2016
Nishioka H Nakamura E Hirose J Okamoto N Yamabe S Mizuta H

Objectives

The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping.

Methods

Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives

Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments.

Materials and Methods

Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 22 - 30
1 Jan 2017
Scott CEH Eaton MJ Nutton RW Wade FA Evans SL Pankaj P

Objectives

Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE).

Materials and Methods

A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.


Bone & Joint Research
Vol. 5, Issue 8 | Pages 320 - 327
1 Aug 2016
van IJsseldijk EA Valstar ER Stoel BC Nelissen RGHH Baka N van’t Klooster R Kaptein BL

Objectives

An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry.

Materials and Methods

A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans.