Objectives. Small animal models of fracture repair primarily investigate
indirect fracture healing via external callus formation. We present
the first described rat model of direct fracture healing. Methods. A rat tibial
The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery. A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.Objectives
Methods
The monitoring of fracture healing is a complex process. Typically, successive radiographs are performed and an emerging calcification of the fracture area is evaluated. The aim of this study was to investigate whether different bone healing patterns can be distinguished using a telemetric instrumented femoral internal plate fixator. An electronic telemetric system was developed to assess bone healing mechanically. The system consists of a telemetry module which is applied to an internal locking plate fixator, an external reader device, a sensor for measuring externally applied load and a laptop computer with processing software. By correlation between externally applied load and load measured in the implant, the elasticity of the osteosynthesis is calculated. The elasticity decreases with ongoing consolidation of a fracture or nonunion and is an appropriate parameter for the course of bone healing. At our centre, clinical application has been performed in 56 patients suffering nonunion or fracture of the femur.Objectives
Materials and Methods
Osteochondral injuries, if not treated adequately, often lead
to severe osteoarthritis. Possible treatment options include refixation
of the fragment or replacement therapies such as Pridie drilling,
microfracture or osteochondral grafts, all of which have certain
disadvantages. Only refixation of the fragment can produce a smooth
and resilient joint surface. The aim of this study was the evaluation
of an ultrasound-activated bioresorbable pin for the refixation of
osteochondral fragments under physiological conditions. In 16 Merino sheep, specific osteochondral fragments of the medial
femoral condyle were produced and refixed with one of conventional
bioresorbable pins, titanium screws or ultrasound-activated pins.
Macro- and microscopic scoring was undertaken after three months. Objectives
Methods