Introduction. The aetiology of hallux valgus is almost certainly multifactoral.
The biomechanics of the first ray is a common factor to most. There
is very little literature examining the anatomy of the proximal
metatarsal articular surface and its relationship to hallux valgus
deformity. Methods. We examined 42 feet from 23 specimens in this anatomical dissection
study. Results. This analysis revealed three distinct articular subtypes. Type
1 had one single facet, type 2 had two distinct articular facets,
and type 3 had three articular facets one of which was a lateral
inferior facet elevated from the first. Type 1 joints occurred exclusively
in the hallux valgus specimens, while type 3 joints occurred exclusively
in normal specimens. Type 2 joints occurred in both hallux valgus
and normal specimens. Another consistent finding in regards to the
proximal articular surface of the first
The aim of this study was to compare the biomechanical stability and clinical outcome of external fixator combined with limited internal fixation (EFLIF) and open reduction and internal fixation (ORIF) in treating Sanders type 2 calcaneal fractures. Two types of fixation systems were selected for finite element analysis and a dual cohort study. Two fixation systems were simulated to fix the fracture in a finite element model. The relative displacement and stress distribution were analysed and compared. A total of 71 consecutive patients with closed Sanders type 2 calcaneal fractures were enrolled and divided into two groups according to the treatment to which they chose: the EFLIF group and the ORIF group. The radiological and clinical outcomes were evaluated and compared.Objectives
Methods
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods