Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.Aims
Methods
The purpose of this study was to compare the thickness of the hip capsule in patients with surgical hip disease, either with cam-femoroacetabular impingement (FAI) or non-FAI hip pathology, with that of asymptomatic control hips. A total of 56 hips in 55 patients underwent a 3Tesla MRI of the hip. These included 40 patients with 41 hips with arthroscopically proven hip disease (16 with cam-FAI; nine men, seven women; mean age 39 years, 22 to 58) and 25 with non-FAI chondrolabral pathology (four men, 21 women; mean age 40 years, 18 to 63) as well as 15 asymptomatic volunteers, whose hips served as controls (ten men, five women; mean age 62 years, 33 to 77). The maximal capsule thickness was measured anteriorly and superiorly, and compared within and between the three groups with a gender subanalysis using student’s Objectives
Methods
The purpose of this study was to investigate whether the femoral
head–neck contour, characterised by the alpha angle, varies with
the stage of physeal maturation using MRI evaluation of an asymptomatic
paediatric population. Paediatric volunteers with asymptomatic hips were recruited to
undergo MRI of both hips. Femoral head physes were graded from 1
(completely open) to 6 (completely fused). The femoral head–neck
contour was evaluated using the alpha angle, measured at the 3:00
(anterior) and 1:30 (anterosuperior) positions and correlated with
physeal grade, with gender sub-analysis performed.Objectives
Methods
The number of surgical procedures performed each year to treat
femoroacetabular impingement (FAI) continues to rise. Although there
is evidence that surgery can improve symptoms in the short-term,
there is no evidence that it slows the development of osteoarthritis
(OA). We performed a feasibility study to determine whether patient
and surgeon opinion was permissive for a Randomised Controlled Trial
(RCT) comparing operative with non-operative treatment for FAI. Surgeon opinion was obtained using validated questionnaires at
a Specialist Hip Meeting (n = 61, 30 of whom stated that they routinely
performed FAI surgery) and patient opinion was obtained from clinical
patients with a new diagnosis of FAI (n = 31).Objectives
Methods
Femoroacetabular impingement (FAI) causes pain
and chondrolabral damage via mechanical overload during movement
of the hip. It is caused by many different types of pathoanatomy,
including the cam ‘bump’, decreased head–neck offset, acetabular
retroversion, global acetabular overcoverage, prominent anterior–inferior
iliac spine, slipped capital femoral epiphysis, and the sequelae
of childhood Perthes’ disease. Both evolutionary and developmental factors may cause FAI. Prevalence
studies show that anatomic variations that cause FAI are common
in the asymptomatic population. Young athletes may be predisposed
to FAI because of the stress on the physis during development. Other
factors, including the soft tissues, may also influence symptoms and
chondrolabral damage. FAI and the resultant chondrolabral pathology are often treated
arthroscopically. Although the results are favourable, morphologies
can be complex, patient expectations are high and the surgery is
challenging. The long-term outcomes of hip arthroscopy are still
forthcoming and it is unknown if treatment of FAI will prevent arthrosis.