Objectives. A successful outcome following treatment of nonunion requires the correct identification of all of the underlying cause(s) and addressing them appropriately. The aim of this study was to assess the distribution and frequency of causative factors in a consecutive cohort of nonunion patients in order to optimise the management strategy for individual patients presenting with nonunion. Methods. Causes of the nonunion were divided into four categories: mechanical; infection; dead bone with a gap; and host. Prospective and retrospective data of 100 consecutive patients who had undergone surgery for long bone fracture nonunion were analysed. Results. A total of 31% of patients had a single attributable cause, 55% had two causes, 14% had three causes and 1% had all four. Of those (31%) with only a single attributable cause, half were due to a mechanical factor and a quarter had dead bone with a gap. Mechanical causation was found in 59% of all patients, dead bone and a gap was present in 47%, host factors in 43% and infection was a causative factor in 38% of patients. In all, three of 58 patients (5%) thought to be aseptic and two of nine (22%) suspected of possible infection were found to be infected. A total of 100% of previously treated patients no longer considered to have ongoing infection, had multiple positive microbiology results. Conclusion. Two thirds of patients had multiple contributing factors for their nonunion and 5% had entirely unexpected infection. This study highlights the importance of identifying all of the
Heterotopic ossification (HO) is perhaps the
single most significant obstacle to independence, functional mobility, and
return to duty for combat-injured veterans of Operation Enduring
Freedom and Operation Iraqi Freedom. Recent research into the cause(s)
of HO has been driven by a markedly higher prevalence seen in these
wounded warriors than encountered in previous wars or following
civilian trauma. To that end, research in both civilian and military
laboratories continues to shed light onto the complex mechanisms
behind HO formation, including systemic and wound specific factors,
cell lineage, and neurogenic inflammation. Of particular interest,
non-invasive