Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
Non-coding microRNA (miRNA) in extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) may promote neuronal repair after spinal cord injury (SCI). In this paper we report on the effects of MSC-EV-microRNA-381 (miR-381) in a rodent model of SCI. In the current study, the luciferase assay confirmed a binding site of bromodomain-containing protein 4 (BRD4) and Wnt family member 5A (WNT5A). Then we detected expression of miR-381, BRD4, and WNT5A in dorsal root ganglia (DRG) cells treated with MSC-isolated EVs and measured neuron apoptosis in culture by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. A rat model of SCI was established to detect the in vivo effect of miR-381 and MSC-EVs on SCI.Aims
Methods
The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods
Objectives. To evaluate the neck strength of school-aged rugby players, and
to define the relationship with proxy physical measures with a view
to predicting neck strength. Methods. Cross-sectional cohort study involving 382 rugby playing schoolchildren
at three Scottish schools (all male, aged between 12 and 18 years).
Outcome measures included maximal isometric neck extension, weight,
height, grip strength, cervical range of movement and neck circumference. Results. Mean neck extension strength increased with age (p = 0.001),
although a wide inter-age range variation was evident, with the
result that some of the oldest children presented with the same
neck strength as the mean of the youngest group. Grip strength explained
the most variation in neck strength (R. 2. = 0.53), while
cervical range of movement and neck girth demonstrated no relationship.
Multivariable analysis demonstrated the independent effects of age,
weight and grip strength, and the resultant model explained 62.1%
of the variance in neck strength. This model predicted actual neck
strength well for the majority of players, although there was a
tendency towards overestimation at the lowest range and underestimation
at the highest. Conclusion. A wide variation was evident in neck strength across the range
of the schoolchild-playing population, with a surprisingly large
number of senior players demonstrating the same mean strength as
the 12-year-old mean value. This may suggest that current training
regimes address