Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV.Objectives
Materials and Methods
The Oxford Hip and Knee Scores (OHS, OKS) have been demonstrated
to vary according to age and gender, making it difficult to compare
results in cohorts with different demographics. The aim of this
paper was to calculate reference values for different patient groups
and highlight the concept of normative reference data to contextualise an
individual’s outcome. We accessed prospectively collected OHS and OKS data for patients
undergoing lower limb joint arthroplasty at a single orthopaedic
teaching hospital during a five-year period.
T-scores were calculated based on the OHS and OKS distributions. Objectives
Methods