This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.Aims
Methods
Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics. Methods. The in vitro study included 20 specimens which were tested during a full stair descent with physiological muscle forces in a dynamic knee rig.
To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.Aims
Methods
The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.Aims
Methods
To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.Aims
Methods
In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.Aims
Methods
This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert.Aims
Methods
To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements. A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization).Aims
Methods
Objectives. The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal
Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.Objectives
Methods
It has been hypothesized that patellofemoral pain, a common knee condition in adolescents and young adults, may be a precursor of degenerative joint changes and may ultimately lead to patellofemoral osteoarthritis. Since both conditions share several mechanical disease characteristics, such as altered contact area between the femur and patella and increased joint stress, we investigated whether these conditions share similar and different shape characteristics of the patella compared with normal controls. This cross-sectional study compared three different study populations: 32 patellofemoral pain subjects (mean age, 32 years (22 to 45); 72% female); 56 isolated radiological patellofemoral osteoarthritis subjects (mean age, 54 years (44 to 58); 89% female); and 80 healthy control subjects (mean age, 52 years (44 to 58); 74% female). Measurements included questionnaires, and lateral and skyline radiographs of the knee. Two separate 30-point 2D statistical shape models of the patella were created from the lateral and skyline radiographs. A general linear model was used to test for differences in standardized shape modes (a specific shape variant of the patella) between patellofemoral osteoarthritis, patellofemoral pain, and controls, using Bonferroni correction and adjustment for body mass index and gender.Objectives
Methods
The aim of this study was to investigate the structural integrity of torn and non-torn human acetabular labral tissue. A total of 47 human labral specimens were obtained from a biobank. These included 22 torn specimens and 25 control specimens from patients undergoing total hip arthroplasty with macroscopically normal labra. The specimens underwent dynamic shear analysis using a rheometer to measure storage modulus, as an indicator of structural integrity.Objectives
Methods
Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions.Objectives
Methods
Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.Objectives
Methods
The purpose of this study was to compare the thickness of the hip capsule in patients with surgical hip disease, either with cam-femoroacetabular impingement (FAI) or non-FAI hip pathology, with that of asymptomatic control hips. A total of 56 hips in 55 patients underwent a 3Tesla MRI of the hip. These included 40 patients with 41 hips with arthroscopically proven hip disease (16 with cam-FAI; nine men, seven women; mean age 39 years, 22 to 58) and 25 with non-FAI chondrolabral pathology (four men, 21 women; mean age 40 years, 18 to 63) as well as 15 asymptomatic volunteers, whose hips served as controls (ten men, five women; mean age 62 years, 33 to 77). The maximal capsule thickness was measured anteriorly and superiorly, and compared within and between the three groups with a gender subanalysis using student’s Objectives
Methods
The purpose of this study was to develop an accurate, reliable and easily applicable method for determining the anatomical location of the joint line during revision knee arthroplasty. The transepicondylar width (TEW), the perpendicular distance between the medial and lateral epicondyles and the distal articular surfaces (DMAD, DLAD) and the distance between the medial and lateral epicondyles and the posterior articular surfaces (PMAD, DLAD) were measured in 40 knees from 20 formalin-fixed adult cadavers (11 male and nine female; mean age at death 56.9 years, Objectives
Methods