Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Bone & Joint Open

General Orthopaedics
Dates
Year From

Year To
Bone & Joint Open
Vol. 3, Issue 10 | Pages 786 - 794
12 Oct 2022
Harrison CJ Plummer OR Dawson J Jenkinson C Hunt A Rodrigues JN

Aims

The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales.

Methods

We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID).