The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD. The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted.Aims
Methods
To systematically review qualitative studies of patients with distal tibia or ankle fracture, and explore their experience of injury and recovery. We undertook a systematic review of qualitative studies. Five databases were searched from inception to 1 February 2022. All titles and abstracts were screened, and a subset were independently assessed. Methodological quality was appraised using the Critical Appraisal Skills Programme (CASP) checklist. The GRADE-CERQual checklist was used to assign confidence ratings. Thematic synthesis was used to analyze data with the identification of codes which were drawn together to form subthemes and then themes.Aims
Methods
To describe outcome reporting variation and trends in non-pharmacological randomized clinical trials (RCTs) of distal tibia and/or ankle fractures. Five electronic databases and three clinical trial registries were searched (January 2000 to February 2022). Trials including patients with distal tibia and/or ankle fractures without concomitant injuries were included. One reviewer conducted all searches, screened titles and abstracts, assessed eligibility, and completed data extraction; a random 10% subset were independently assessed and extracted by a second reviewer at each stage. All extracted outcomes were mapped to a modified version of the International Classification of Functioning, Disability and Health framework. The quality of outcome reporting (reproducibility) was assessed.Aims
Methods
The purpose of this study is to examine the adductus impact on the second metatarsal by the nonosteotomy nonarthrodesis syndesmosis procedure for the hallux valgus deformity correction, and how it would affect the mechanical function of the forefoot in walking. For correcting the metatarsus primus varus deformity of hallux valgus feet, the syndesmosis procedure binds first metatarsal to the second metatarsal with intermetatarsal cerclage sutures. We reviewed clinical records of a single surgical practice from its entire 2014 calendar year. In total, 71 patients (121 surgical feet) qualified for the study with a mean follow-up of 20.3 months (SD 6.2). We measured their metatarsus adductus angle with the Sgarlato’s method (SMAA), and the intermetatarsal angle (IMA) and metatarsophalangeal angle (MPA) with Hardy’s mid axial method. We also assessed their American Orthopaedic Foot & Ankle Society (AOFAS) clinical scale score, and photographic and pedobarographic images for clinical function results.Aims
Methods