Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims. To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA. Methods. Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models. Results. Of the 5,600 patients included in this study, 342 (6.1%) underwent SDD. The random forest (RF) model performed the best overall, with an internally validated AUC of 0.810. The ten crucial factors favoring SDD in the RF model include operating time, anaesthesia type, age, BMI, American Society of Anesthesiologists grade, race, history of diabetes, rTKA type, sex, and smoking status. Eight of these variables were also found to be significant in the MLR model. Conclusion. The RF model displayed excellent accuracy and identified clinically important variables for determining candidates for SDD following rTKA. Machine learning techniques such as RF will allow clinicians to accurately risk-stratify their patients preoperatively, in order to optimize resources and improve patient outcomes. Cite this article: Bone Jt Open 2023;4(6):399–407


Bone & Joint Open
Vol. 4, Issue 8 | Pages 621 - 627
22 Aug 2023
Fishley WG Paice S Iqbal H Mowat S Kalson NS Reed M Partington P Petheram TG

Aims

The rate of day-case total knee arthroplasty (TKA) in the UK is currently approximately 0.5%. Reducing length of stay allows orthopaedic providers to improve efficiency, increase operative throughput, and tackle the rising demand for joint arthroplasty surgery and the COVID-19-related backlog. Here, we report safe delivery of day-case TKA in an NHS trust via inpatient wards with no additional resources.

Methods

Day-case TKAs, defined as patients discharged on the same calendar day as surgery, were retrospectively reviewed with a minimum follow-up of six months. Analysis of hospital and primary care records was performed to determine readmission and reattendance rates. Telephone interviews were conducted to determine patient satisfaction.