Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 5, Issue 3 | Pages 218 - 226
15 Mar 2024
Voigt JD Potter BK Souza J Forsberg J Melton D Hsu JR Wilke B

Aims. Prior cost-effectiveness analyses on osseointegrated prosthesis for transfemoral unilateral amputees have analyzed outcomes in non-USA countries using generic quality of life instruments, which may not be appropriate when evaluating disease-specific quality of life. These prior analyses have also focused only on patients who had failed a socket-based prosthesis. The aim of the current study is to use a disease-specific quality of life instrument, which can more accurately reflect a patient’s quality of life with this condition in order to evaluate cost-effectiveness, examining both treatment-naïve and socket refractory patients. Methods. Lifetime Markov models were developed evaluating active healthy middle-aged male amputees. Costs of the prostheses, associated complications, use/non-use, and annual costs of arthroplasty parts and service for both a socket and osseointegrated (OPRA) prosthesis were included. Effectiveness was evaluated using the questionnaire for persons with a transfemoral amputation (Q-TFA) until death. All costs and Q-TFA were discounted at 3% annually. Sensitivity analyses on those cost variables which affected a change in treatment (OPRA to socket, or socket to OPRA) were evaluated to determine threshold values. Incremental cost-effectiveness ratios (ICERs) were calculated. Results. For treatment-naïve patients, the lifetime ICER for OPRA was $279/quality-adjusted life-year (QALY). For treatment-refractory patients the ICER was $273/QALY. In sensitivity analysis, the variable thresholds that would affect a change in the course of treatment based on cost (from socket to OPRA), included the following for the treatment-naïve group: yearly replacement components for socket > $8,511; cost yearly replacement parts OPRA < $1,758; and for treatment-refractory group: yearly replacement component for socket of > $12,467. Conclusion. The use of the OPRA prosthesis in physically active transfemoral amputees should be considered as a cost-effective alternative in both treatment-naïve and treatment-refractory socket prosthesis patients. Disease-specific quality of life assessments such as Q-TFA are more sensitive when evaluating cost-effectiveness. Cite this article: Bone Jt Open 2024;5(3):218–226


Bone & Joint Open
Vol. 3, Issue 7 | Pages 566 - 572
18 Jul 2022
Oliver WM Molyneux SG White TO Clement ND Duckworth AD

Aims. The primary aim was to estimate the cost-effectiveness of routine operative fixation for all patients with humeral shaft fractures. The secondary aim was to estimate the health economic implications of using a Radiographic Union Score for HUmeral fractures (RUSHU) of < 8 to facilitate selective fixation for patients at risk of nonunion. Methods. From 2008 to 2017, 215 patients (mean age 57 yrs (17 to 18), 61% female (n = 130/215)) with a nonoperatively managed humeral diaphyseal fracture were retrospectively identified. Union was achieved in 77% (n = 165/215) after initial nonoperative management, with 23% (n = 50/215) uniting after surgery for nonunion. The EuroQol five-dimension three-level health index (EQ-5D-3L) was obtained via postal survey. Multiple regression was used to determine the independent influence of patient, injury, and management factors upon the EQ-5D-3L. An incremental cost-effectiveness ratio (ICER) of < £20,000 per quality-adjusted life-year (QALY) gained was considered cost-effective. Results. At a mean of 5.4 yrs (1.2 to 11.0), the mean EQ-5D-3L was 0.736 (95% confidence interval (CI) 0.697 to 0.775). Adjusted analysis demonstrated the EQ-5D-3L was inferior among patients who united after nonunion surgery (β = 0.103; p = 0.032). Offering routine fixation to all patients to reduce the rate of nonunion would be associated with increased treatment costs of £1,542/patient, but would confer a potential EQ-5D-3L benefit of 0.120/patient over the study period. The ICER of routine fixation was £12,850/QALY gained. Selective fixation based on a RUSHU < 8 at six weeks post-injury would be associated with reduced treatment costs (£415/patient), and would confer a potential EQ-5D-3L benefit of 0.335 per ‘at-risk patient’. Conclusion. Routine fixation for patients with humeral shaft fractures to reduce the rate of nonunion observed after nonoperative management appears to be a cost-effective intervention at five years post-injury. Selective fixation for patients at risk of nonunion based on their RUSHU may confer even greater cost-effectiveness, given the potential savings and improvement in health-related quality of life. Cite this article: Bone Jt Open 2022;3(7):566–572